- -

Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers

Show full item record

Sancho Durá, J.; Sales Maicas, S.; Primerov, N.; Chin, S.; Antman, Y.; Zadok, A.; Thevenaz, L. (2012). Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers. Optics Express. 20(6):6157-6162. doi:10.1364/OE.20.006157

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/30809

Files in this item

Item Metadata

Title: Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Issued date:
Abstract:
We propose and experimentally demonstrate new architectures to realize multi-tap microwave photonic filters, based on the generation of a single or multiple dynamic Brillouin gratings in polarization maintaining fibers. ...[+]
Subjects: Scattering , Signals , Light , Analog optical signal processing , Scattering, stimulated Brillouin , Nonlinear optics, fibers
Copyrigths: Reserva de todos los derechos
Source:
Optics Express. (issn: 1094-4087 )
DOI: 10.1364/OE.20.006157
Publisher:
Optical Society of America
Publisher version: http://dx.doi.org/10.1364/OE.20.006157
Description: This paper was published in OPTICS EXPRESS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.20.006157. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law
Thanks:
The authors wish to acknowledge the financial support of the European Community's Seventh Framework Programme (FP 7) project GOSPEL; the GVA PROMETEO 2008/092, Infraestructura FEDER UPVOV08-3E-008, the Plan Nacional I + D ...[+]
Type: Artículo

References

Seeds, A. J. (2002). Microwave photonics. IEEE Transactions on Microwave Theory and Techniques, 50(3), 877-887. doi:10.1109/22.989971

Capmany, J., & Novak, D. (2007). Microwave photonics combines two worlds. Nature Photonics, 1(6), 319-330. doi:10.1038/nphoton.2007.89

Capmany, J., Ortega, B., Pastor, D., & Sales, S. (2005). Discrete-time optical Processing of microwave signals. Journal of Lightwave Technology, 23(2), 702-723. doi:10.1109/jlt.2004.838819 [+]
Seeds, A. J. (2002). Microwave photonics. IEEE Transactions on Microwave Theory and Techniques, 50(3), 877-887. doi:10.1109/22.989971

Capmany, J., & Novak, D. (2007). Microwave photonics combines two worlds. Nature Photonics, 1(6), 319-330. doi:10.1038/nphoton.2007.89

Capmany, J., Ortega, B., Pastor, D., & Sales, S. (2005). Discrete-time optical Processing of microwave signals. Journal of Lightwave Technology, 23(2), 702-723. doi:10.1109/jlt.2004.838819

Yao, J. (2009). Microwave Photonics. Journal of Lightwave Technology, 27(3), 314-335. doi:10.1109/jlt.2008.2009551

Minasian, R. A. (2006). Photonic signal processing of microwave signals. IEEE Transactions on Microwave Theory and Techniques, 54(2), 832-846. doi:10.1109/tmtt.2005.863060

Mørk, J., Kjær, R., van der Poel, M., & Yvind, K. (2005). Slow light in a semiconductor waveguide at gigahertz frequencies. Optics Express, 13(20), 8136. doi:10.1364/opex.13.008136

Su, H., Kondratko, P., & Chuang, S. L. (2006). Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers. Optics Express, 14(11), 4800. doi:10.1364/oe.14.004800

Song, K. Y., Herr�ez, M. G., & Th�venaz, L. (2005). Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. Optics Express, 13(1), 82. doi:10.1364/opex.13.000082

Song, K. Y., Zou, W., He, Z., & Hotate, K. (2008). All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber. Optics Letters, 33(9), 926. doi:10.1364/ol.33.000926

Song, K. Y., & Yoon, H. J. (2010). Observation of narrowband intrinsic spectra of Brillouin dynamic gratings. Optics Letters, 35(17), 2958. doi:10.1364/ol.35.002958

Kwang Yong Song, Sanghoon Chin, Primerov, N., & Thevenaz, L. (2010). Time-Domain Distributed Fiber Sensor With 1 cm Spatial Resolution Based on Brillouin Dynamic Grating. Journal of Lightwave Technology, 28(14), 2062-2067. doi:10.1109/jlt.2010.2050763

[-]

This item appears in the following Collection(s)

Show full item record