- -

Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sancho Durá, Juan es_ES
dc.contributor.author Sales Maicas, Salvador es_ES
dc.contributor.author Primerov, N. es_ES
dc.contributor.author Chin, S. es_ES
dc.contributor.author Antman, Y. es_ES
dc.contributor.author Zadok, A es_ES
dc.contributor.author Thevenaz, L. es_ES
dc.date.accessioned 2013-07-08T10:52:15Z
dc.date.available 2013-07-08T10:52:15Z
dc.date.issued 2012
dc.identifier.issn 1094-4087
dc.identifier.uri http://hdl.handle.net/10251/30809
dc.description This paper was published in OPTICS EXPRESS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.20.006157. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law en_EN
dc.description.abstract We propose and experimentally demonstrate new architectures to realize multi-tap microwave photonic filters, based on the generation of a single or multiple dynamic Brillouin gratings in polarization maintaining fibers. The spectral range and selectivity of the proposed periodic filters is extensively tunable, simply by reconfiguring the positions and the number of dynamic gratings along the fiber respectively. In this paper, we present a complete analysis of three different configurations comprising a microwave photonic filter implementation: a simple notch-type Mach-Zehnder approach with a single movable dynamic grating, a multi-tap performance based on multiple dynamic gratings and finally a stationary grating configuration based on the phase modulation of two counter-propagating optical waves by a common pseudo-random bit sequence (PRBS). es_ES
dc.description.sponsorship The authors wish to acknowledge the financial support of the European Community's Seventh Framework Programme (FP 7) project GOSPEL; the GVA PROMETEO 2008/092, Infraestructura FEDER UPVOV08-3E-008, the Plan Nacional I + D TEC2011-29120-C05-05, the Swiss National Science Foundation through project 200021-134546 and the EPFL Space Center, the Israeli Science Foundation (ISF), and the KAMIN program of the Chief Scientist Office, Israel Ministry of Industry, Trade and Labor. en_EN
dc.language Inglés es_ES
dc.publisher Optical Society of America es_ES
dc.relation European Community (FP 7) project GOSPEL es_ES
dc.relation.ispartof Optics Express es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Scattering es_ES
dc.subject Signals es_ES
dc.subject Light es_ES
dc.subject Analog optical signal processing es_ES
dc.subject Scattering, stimulated Brillouin es_ES
dc.subject Nonlinear optics, fibers es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OE.20.006157
dc.relation.projectID info:eu-repo/grantAgreement/SNSF//200021_134546/CH/All-optical control of the timing of light in fibres/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Comunidades de Castilla-La Mancha//08%2F092/ES/08%2F092/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//UPOV08-3E-008/ES/INSTRUMENTACION AVANZADA PARA COMUNICACIONES OPTICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-29120-C05-05/ES/APLICACIONES DE LA TECNOLOGIA NANOFOTONICA AL CAMPO DE LAS TELECOMUNICACIONES Y LOS SENSORES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Sancho Durá, J.; Sales Maicas, S.; Primerov, N.; Chin, S.; Antman, Y.; Zadok, A.; Thevenaz, L. (2012). Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers. Optics Express. 20(6):6157-6162. https://doi.org/10.1364/OE.20.006157 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1364/OE.20.006157 es_ES
dc.description.upvformatpinicio 6157 es_ES
dc.description.upvformatpfin 6162 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 237872
dc.contributor.funder Junta de Comunidades de Castilla-La Mancha es_ES
dc.contributor.funder Ministry of Industry, Trade and Labor, Israel es_ES
dc.contributor.funder EPFL Space Center es_ES
dc.contributor.funder Swiss National Science Foundation es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Israel Science Foundation es_ES
dc.description.references Seeds, A. J. (2002). Microwave photonics. IEEE Transactions on Microwave Theory and Techniques, 50(3), 877-887. doi:10.1109/22.989971 es_ES
dc.description.references Capmany, J., & Novak, D. (2007). Microwave photonics combines two worlds. Nature Photonics, 1(6), 319-330. doi:10.1038/nphoton.2007.89 es_ES
dc.description.references Capmany, J., Ortega, B., Pastor, D., & Sales, S. (2005). Discrete-time optical Processing of microwave signals. Journal of Lightwave Technology, 23(2), 702-723. doi:10.1109/jlt.2004.838819 es_ES
dc.description.references Yao, J. (2009). Microwave Photonics. Journal of Lightwave Technology, 27(3), 314-335. doi:10.1109/jlt.2008.2009551 es_ES
dc.description.references Minasian, R. A. (2006). Photonic signal processing of microwave signals. IEEE Transactions on Microwave Theory and Techniques, 54(2), 832-846. doi:10.1109/tmtt.2005.863060 es_ES
dc.description.references Mørk, J., Kjær, R., van der Poel, M., & Yvind, K. (2005). Slow light in a semiconductor waveguide at gigahertz frequencies. Optics Express, 13(20), 8136. doi:10.1364/opex.13.008136 es_ES
dc.description.references Su, H., Kondratko, P., & Chuang, S. L. (2006). Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers. Optics Express, 14(11), 4800. doi:10.1364/oe.14.004800 es_ES
dc.description.references Song, K. Y., Herr�ez, M. G., & Th�venaz, L. (2005). Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. Optics Express, 13(1), 82. doi:10.1364/opex.13.000082 es_ES
dc.description.references Song, K. Y., Zou, W., He, Z., & Hotate, K. (2008). All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber. Optics Letters, 33(9), 926. doi:10.1364/ol.33.000926 es_ES
dc.description.references Song, K. Y., & Yoon, H. J. (2010). Observation of narrowband intrinsic spectra of Brillouin dynamic gratings. Optics Letters, 35(17), 2958. doi:10.1364/ol.35.002958 es_ES
dc.description.references Kwang Yong Song, Sanghoon Chin, Primerov, N., & Thevenaz, L. (2010). Time-Domain Distributed Fiber Sensor With 1 cm Spatial Resolution Based on Brillouin Dynamic Grating. Journal of Lightwave Technology, 28(14), 2062-2067. doi:10.1109/jlt.2010.2050763 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem