Mostrar el registro sencillo del ítem
dc.contributor.author | Sancho Durá, Juan | es_ES |
dc.contributor.author | Sales Maicas, Salvador | es_ES |
dc.contributor.author | Primerov, N. | es_ES |
dc.contributor.author | Chin, S. | es_ES |
dc.contributor.author | Antman, Y. | es_ES |
dc.contributor.author | Zadok, A | es_ES |
dc.contributor.author | Thevenaz, L. | es_ES |
dc.date.accessioned | 2013-07-08T10:52:15Z | |
dc.date.available | 2013-07-08T10:52:15Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1094-4087 | |
dc.identifier.uri | http://hdl.handle.net/10251/30809 | |
dc.description | This paper was published in OPTICS EXPRESS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.20.006157. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law | en_EN |
dc.description.abstract | We propose and experimentally demonstrate new architectures to realize multi-tap microwave photonic filters, based on the generation of a single or multiple dynamic Brillouin gratings in polarization maintaining fibers. The spectral range and selectivity of the proposed periodic filters is extensively tunable, simply by reconfiguring the positions and the number of dynamic gratings along the fiber respectively. In this paper, we present a complete analysis of three different configurations comprising a microwave photonic filter implementation: a simple notch-type Mach-Zehnder approach with a single movable dynamic grating, a multi-tap performance based on multiple dynamic gratings and finally a stationary grating configuration based on the phase modulation of two counter-propagating optical waves by a common pseudo-random bit sequence (PRBS). | es_ES |
dc.description.sponsorship | The authors wish to acknowledge the financial support of the European Community's Seventh Framework Programme (FP 7) project GOSPEL; the GVA PROMETEO 2008/092, Infraestructura FEDER UPVOV08-3E-008, the Plan Nacional I + D TEC2011-29120-C05-05, the Swiss National Science Foundation through project 200021-134546 and the EPFL Space Center, the Israeli Science Foundation (ISF), and the KAMIN program of the Chief Scientist Office, Israel Ministry of Industry, Trade and Labor. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Optical Society of America | es_ES |
dc.relation | European Community (FP 7) project GOSPEL | es_ES |
dc.relation.ispartof | Optics Express | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Scattering | es_ES |
dc.subject | Signals | es_ES |
dc.subject | Light | es_ES |
dc.subject | Analog optical signal processing | es_ES |
dc.subject | Scattering, stimulated Brillouin | es_ES |
dc.subject | Nonlinear optics, fibers | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/OE.20.006157 | |
dc.relation.projectID | info:eu-repo/grantAgreement/SNSF//200021_134546/CH/All-optical control of the timing of light in fibres/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Comunidades de Castilla-La Mancha//08%2F092/ES/08%2F092/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//UPOV08-3E-008/ES/INSTRUMENTACION AVANZADA PARA COMUNICACIONES OPTICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2011-29120-C05-05/ES/APLICACIONES DE LA TECNOLOGIA NANOFOTONICA AL CAMPO DE LAS TELECOMUNICACIONES Y LOS SENSORES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Sancho Durá, J.; Sales Maicas, S.; Primerov, N.; Chin, S.; Antman, Y.; Zadok, A.; Thevenaz, L. (2012). Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers. Optics Express. 20(6):6157-6162. https://doi.org/10.1364/OE.20.006157 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1364/OE.20.006157 | es_ES |
dc.description.upvformatpinicio | 6157 | es_ES |
dc.description.upvformatpfin | 6162 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 237872 | |
dc.contributor.funder | Junta de Comunidades de Castilla-La Mancha | es_ES |
dc.contributor.funder | Ministry of Industry, Trade and Labor, Israel | es_ES |
dc.contributor.funder | EPFL Space Center | es_ES |
dc.contributor.funder | Swiss National Science Foundation | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Israel Science Foundation | es_ES |
dc.description.references | Seeds, A. J. (2002). Microwave photonics. IEEE Transactions on Microwave Theory and Techniques, 50(3), 877-887. doi:10.1109/22.989971 | es_ES |
dc.description.references | Capmany, J., & Novak, D. (2007). Microwave photonics combines two worlds. Nature Photonics, 1(6), 319-330. doi:10.1038/nphoton.2007.89 | es_ES |
dc.description.references | Capmany, J., Ortega, B., Pastor, D., & Sales, S. (2005). Discrete-time optical Processing of microwave signals. Journal of Lightwave Technology, 23(2), 702-723. doi:10.1109/jlt.2004.838819 | es_ES |
dc.description.references | Yao, J. (2009). Microwave Photonics. Journal of Lightwave Technology, 27(3), 314-335. doi:10.1109/jlt.2008.2009551 | es_ES |
dc.description.references | Minasian, R. A. (2006). Photonic signal processing of microwave signals. IEEE Transactions on Microwave Theory and Techniques, 54(2), 832-846. doi:10.1109/tmtt.2005.863060 | es_ES |
dc.description.references | Mørk, J., Kjær, R., van der Poel, M., & Yvind, K. (2005). Slow light in a semiconductor waveguide at gigahertz frequencies. Optics Express, 13(20), 8136. doi:10.1364/opex.13.008136 | es_ES |
dc.description.references | Su, H., Kondratko, P., & Chuang, S. L. (2006). Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers. Optics Express, 14(11), 4800. doi:10.1364/oe.14.004800 | es_ES |
dc.description.references | Song, K. Y., Herr�ez, M. G., & Th�venaz, L. (2005). Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. Optics Express, 13(1), 82. doi:10.1364/opex.13.000082 | es_ES |
dc.description.references | Song, K. Y., Zou, W., He, Z., & Hotate, K. (2008). All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber. Optics Letters, 33(9), 926. doi:10.1364/ol.33.000926 | es_ES |
dc.description.references | Song, K. Y., & Yoon, H. J. (2010). Observation of narrowband intrinsic spectra of Brillouin dynamic gratings. Optics Letters, 35(17), 2958. doi:10.1364/ol.35.002958 | es_ES |
dc.description.references | Kwang Yong Song, Sanghoon Chin, Primerov, N., & Thevenaz, L. (2010). Time-Domain Distributed Fiber Sensor With 1 cm Spatial Resolution Based on Brillouin Dynamic Grating. Journal of Lightwave Technology, 28(14), 2062-2067. doi:10.1109/jlt.2010.2050763 | es_ES |