- -

Engineering antenna radiation patterns via quasi-conformal mappings

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Engineering antenna radiation patterns via quasi-conformal mappings

Mostrar el registro completo del ítem

García Meca, C.; Martínez Abietar, AJ.; Leonhardt, U. (2011). Engineering antenna radiation patterns via quasi-conformal mappings. Optics Express. 19(24):23743-23750. https://doi.org/10.1364/OE.19.023743

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/31056

Ficheros en el ítem

Metadatos del ítem

Título: Engineering antenna radiation patterns via quasi-conformal mappings
Autor: García Meca, Carlos Martínez Abietar, Alejandro José Leonhardt, U.
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
We use a combination of conformal and quasi-conformal mappings to engineer isotropic electromagnetic devices that modify the omnidirectional radiation pattern of a point source. For TE waves, the designed devices are also ...[+]
Palabras clave: Metamaterials , Optical devices
Derechos de uso: Reserva de todos los derechos
Fuente:
Optics Express. (issn: 1094-4087 )
DOI: 10.1364/OE.19.023743
Editorial:
Optical Society of America
Versión del editor: http://dx.doi.org/10.1364/OE.19.023743
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/
Descripción: This paper was published in OPTICS EXPRESS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.19.023743. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law
Agradecimientos:
Financial support by the Spanish Ministerio de Ciencia e Innovacion (contract CSD2008-00066 and FPU grant) is gratefully acknowledged.
Tipo: Artículo

References

Martínez, A., Piqueras, M. A., & Martí, J. (2006). Generation of highly directional beam by k-space filtering using a metamaterial flat slab with a small negative index of refraction. Applied Physics Letters, 89(13), 131111. doi:10.1063/1.2357861

Martínez, A., García, R., Håkansson, A., Piqueras, M. A., & Sánchez-Dehesa, J. (2008). Electromagnetic beaming from omnidirectional sources by inverse design. Applied Physics Letters, 92(5), 051105. doi:10.1063/1.2838324

Li, J., Salandrino, A., & Engheta, N. (2009). Optical spectrometer at the nanoscale using optical Yagi-Uda nanoantennas. Physical Review B, 79(19). doi:10.1103/physrevb.79.195104 [+]
Martínez, A., Piqueras, M. A., & Martí, J. (2006). Generation of highly directional beam by k-space filtering using a metamaterial flat slab with a small negative index of refraction. Applied Physics Letters, 89(13), 131111. doi:10.1063/1.2357861

Martínez, A., García, R., Håkansson, A., Piqueras, M. A., & Sánchez-Dehesa, J. (2008). Electromagnetic beaming from omnidirectional sources by inverse design. Applied Physics Letters, 92(5), 051105. doi:10.1063/1.2838324

Li, J., Salandrino, A., & Engheta, N. (2009). Optical spectrometer at the nanoscale using optical Yagi-Uda nanoantennas. Physical Review B, 79(19). doi:10.1103/physrevb.79.195104

Chen, Y., Lodahl, P., & Koenderink, A. F. (2010). Dynamically reconfigurable directionality of plasmon-based single photon sources. Physical Review B, 82(8). doi:10.1103/physrevb.82.081402

Curto, A. G., Volpe, G., Taminiau, T. H., Kreuzer, M. P., Quidant, R., & van Hulst, N. F. (2010). Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna. Science, 329(5994), 930-933. doi:10.1126/science.1191922

Dregely, D., Taubert, R., Dorfmüller, J., Vogelgesang, R., Kern, K., & Giessen, H. (2011). 3D optical Yagi–Uda nanoantenna array. Nature Communications, 2(1). doi:10.1038/ncomms1268

Kong, F., Wu, B.-I., Kong, J. A., Huangfu, J., Xi, S., & Chen, H. (2007). Planar focusing antenna design by using coordinate transformation technology. Applied Physics Letters, 91(25), 253509. doi:10.1063/1.2826283

Jiang, W. X., Cui, T. J., Ma, H. F., Zhou, X. Y., & Cheng, Q. (2008). Cylindrical-to-plane-wave conversion via embedded optical transformation. Applied Physics Letters, 92(26), 261903. doi:10.1063/1.2953447

Luo, Y., Zhang, J., Ran, L., Chen, H., & Kong, J. A. (2008). Controlling the Emission of Electromagnetic Source. PIERS Online, 4(7), 795-800. doi:10.2529/piers071229161355

Kundtz, N., Roberts, D. A., Allen, J., Cummer, S., & Smith, D. R. (2008). Optical source transformations. Optics Express, 16(26), 21215. doi:10.1364/oe.16.021215

Popa, B.-I., Allen, J., & Cummer, S. A. (2009). Conformal array design with transformation electromagnetics. Applied Physics Letters, 94(24), 244102. doi:10.1063/1.3158614

Tichit, P.-H., Burokur, S. N., & de Lustrac, A. (2009). Ultradirective antenna via transformation optics. Journal of Applied Physics, 105(10), 104912. doi:10.1063/1.3131843

Tichit, P.-H., Burokur, S. N., Germain, D., & de Lustrac, A. (2011). Design and experimental demonstration of a high-directive emission with transformation optics. Physical Review B, 83(15). doi:10.1103/physrevb.83.155108

Leonhardt, U., & Tyc, T. (2008). Superantenna made of transformation media. New Journal of Physics, 10(11), 115026. doi:10.1088/1367-2630/10/11/115026

Leonhardt, U. (2006). Optical Conformal Mapping. Science, 312(5781), 1777-1780. doi:10.1126/science.1126493

Turpin, J. P., Massoud, A. T., Jiang, Z. H., Werner, P. L., & Werner, D. H. (2009). Conformal mappings to achieve simple material parameters for transformation optics devices. Optics Express, 18(1), 244. doi:10.1364/oe.18.000244

Schmiele, M., Varma, V. S., Rockstuhl, C., & Lederer, F. (2010). Designing optical elements from isotropic materials by using transformation optics. Physical Review A, 81(3). doi:10.1103/physreva.81.033837

Li, J., & Pendry, J. B. (2008). Hiding under the Carpet: A New Strategy for Cloaking. Physical Review Letters, 101(20). doi:10.1103/physrevlett.101.203901

Chang, Z., Zhou, X., Hu, J., & Hu, G. (2010). Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries. Optics Express, 18(6), 6089. doi:10.1364/oe.18.006089

Li, J., Han, S., Zhang, S., Bartal, G., & Zhang, X. (2009). Designing the Fourier space with transformation optics. Optics Letters, 34(20), 3128. doi:10.1364/ol.34.003128

Korobkin, D., Urzhumov, Y., & Shvets, G. (2006). Enhanced near-field resolution in midinfrared using metamaterials. Journal of the Optical Society of America B, 23(3), 468. doi:10.1364/josab.23.000468

Valentine, J., Li, J., Zentgraf, T., Bartal, G., & Zhang, X. (2009). An optical cloak made of dielectrics. Nature Materials, 8(7), 568-571. doi:10.1038/nmat2461

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem