Mostrar el registro sencillo del ítem
dc.contributor.author | García Meca, Carlos | es_ES |
dc.contributor.author | Martínez Abietar, Alejandro José | es_ES |
dc.contributor.author | Leonhardt, U. | es_ES |
dc.date.accessioned | 2013-07-12T07:12:49Z | |
dc.date.available | 2013-07-12T07:12:49Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 1094-4087 | |
dc.identifier.uri | http://hdl.handle.net/10251/31056 | |
dc.description | This paper was published in OPTICS EXPRESS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.19.023743. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law | es_ES |
dc.description.abstract | We use a combination of conformal and quasi-conformal mappings to engineer isotropic electromagnetic devices that modify the omnidirectional radiation pattern of a point source. For TE waves, the designed devices are also non-magnetic. The flexibility offered by the proposed method is much higher than that achieved with conformal mappings. As a result, it is shown that complex radiation patterns can be achieved, which can combine high directivity in a desired number of arbitrary directions and isotropic radiation in other specified angular ranges. In addition, this technique enables us to control the power radiated in each direction to a certain extent. The obtained results are valid for any part of the spectrum. The potential of this method is illustrated with some examples. Finally, we study the frequency dependence of the considered devices and propose a practical dielectric implementation. (C) 2011 Optical Society of America | es_ES |
dc.description.sponsorship | Financial support by the Spanish Ministerio de Ciencia e Innovacion (contract CSD2008-00066 and FPU grant) is gratefully acknowledged. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Optical Society of America | es_ES |
dc.relation.ispartof | Optics Express | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Metamaterials | es_ES |
dc.subject | Optical devices | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Engineering antenna radiation patterns via quasi-conformal mappings | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/OE.19.023743 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | García Meca, C.; Martínez Abietar, AJ.; Leonhardt, U. (2011). Engineering antenna radiation patterns via quasi-conformal mappings. Optics Express. 19(24):23743-23750. https://doi.org/10.1364/OE.19.023743 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1364/OE.19.023743 | es_ES |
dc.description.upvformatpinicio | 23743 | es_ES |
dc.description.upvformatpfin | 23750 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 24 | es_ES |
dc.relation.senia | 209142 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Martínez, A., Piqueras, M. A., & Martí, J. (2006). Generation of highly directional beam by k-space filtering using a metamaterial flat slab with a small negative index of refraction. Applied Physics Letters, 89(13), 131111. doi:10.1063/1.2357861 | es_ES |
dc.description.references | Martínez, A., García, R., Håkansson, A., Piqueras, M. A., & Sánchez-Dehesa, J. (2008). Electromagnetic beaming from omnidirectional sources by inverse design. Applied Physics Letters, 92(5), 051105. doi:10.1063/1.2838324 | es_ES |
dc.description.references | Li, J., Salandrino, A., & Engheta, N. (2009). Optical spectrometer at the nanoscale using optical Yagi-Uda nanoantennas. Physical Review B, 79(19). doi:10.1103/physrevb.79.195104 | es_ES |
dc.description.references | Chen, Y., Lodahl, P., & Koenderink, A. F. (2010). Dynamically reconfigurable directionality of plasmon-based single photon sources. Physical Review B, 82(8). doi:10.1103/physrevb.82.081402 | es_ES |
dc.description.references | Curto, A. G., Volpe, G., Taminiau, T. H., Kreuzer, M. P., Quidant, R., & van Hulst, N. F. (2010). Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna. Science, 329(5994), 930-933. doi:10.1126/science.1191922 | es_ES |
dc.description.references | Dregely, D., Taubert, R., Dorfmüller, J., Vogelgesang, R., Kern, K., & Giessen, H. (2011). 3D optical Yagi–Uda nanoantenna array. Nature Communications, 2(1). doi:10.1038/ncomms1268 | es_ES |
dc.description.references | Kong, F., Wu, B.-I., Kong, J. A., Huangfu, J., Xi, S., & Chen, H. (2007). Planar focusing antenna design by using coordinate transformation technology. Applied Physics Letters, 91(25), 253509. doi:10.1063/1.2826283 | es_ES |
dc.description.references | Jiang, W. X., Cui, T. J., Ma, H. F., Zhou, X. Y., & Cheng, Q. (2008). Cylindrical-to-plane-wave conversion via embedded optical transformation. Applied Physics Letters, 92(26), 261903. doi:10.1063/1.2953447 | es_ES |
dc.description.references | Luo, Y., Zhang, J., Ran, L., Chen, H., & Kong, J. A. (2008). Controlling the Emission of Electromagnetic Source. PIERS Online, 4(7), 795-800. doi:10.2529/piers071229161355 | es_ES |
dc.description.references | Kundtz, N., Roberts, D. A., Allen, J., Cummer, S., & Smith, D. R. (2008). Optical source transformations. Optics Express, 16(26), 21215. doi:10.1364/oe.16.021215 | es_ES |
dc.description.references | Popa, B.-I., Allen, J., & Cummer, S. A. (2009). Conformal array design with transformation electromagnetics. Applied Physics Letters, 94(24), 244102. doi:10.1063/1.3158614 | es_ES |
dc.description.references | Tichit, P.-H., Burokur, S. N., & de Lustrac, A. (2009). Ultradirective antenna via transformation optics. Journal of Applied Physics, 105(10), 104912. doi:10.1063/1.3131843 | es_ES |
dc.description.references | Tichit, P.-H., Burokur, S. N., Germain, D., & de Lustrac, A. (2011). Design and experimental demonstration of a high-directive emission with transformation optics. Physical Review B, 83(15). doi:10.1103/physrevb.83.155108 | es_ES |
dc.description.references | Leonhardt, U., & Tyc, T. (2008). Superantenna made of transformation media. New Journal of Physics, 10(11), 115026. doi:10.1088/1367-2630/10/11/115026 | es_ES |
dc.description.references | Leonhardt, U. (2006). Optical Conformal Mapping. Science, 312(5781), 1777-1780. doi:10.1126/science.1126493 | es_ES |
dc.description.references | Turpin, J. P., Massoud, A. T., Jiang, Z. H., Werner, P. L., & Werner, D. H. (2009). Conformal mappings to achieve simple material parameters for transformation optics devices. Optics Express, 18(1), 244. doi:10.1364/oe.18.000244 | es_ES |
dc.description.references | Schmiele, M., Varma, V. S., Rockstuhl, C., & Lederer, F. (2010). Designing optical elements from isotropic materials by using transformation optics. Physical Review A, 81(3). doi:10.1103/physreva.81.033837 | es_ES |
dc.description.references | Li, J., & Pendry, J. B. (2008). Hiding under the Carpet: A New Strategy for Cloaking. Physical Review Letters, 101(20). doi:10.1103/physrevlett.101.203901 | es_ES |
dc.description.references | Chang, Z., Zhou, X., Hu, J., & Hu, G. (2010). Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries. Optics Express, 18(6), 6089. doi:10.1364/oe.18.006089 | es_ES |
dc.description.references | Li, J., Han, S., Zhang, S., Bartal, G., & Zhang, X. (2009). Designing the Fourier space with transformation optics. Optics Letters, 34(20), 3128. doi:10.1364/ol.34.003128 | es_ES |
dc.description.references | Korobkin, D., Urzhumov, Y., & Shvets, G. (2006). Enhanced near-field resolution in midinfrared using metamaterials. Journal of the Optical Society of America B, 23(3), 468. doi:10.1364/josab.23.000468 | es_ES |
dc.description.references | Valentine, J., Li, J., Zentgraf, T., Bartal, G., & Zhang, X. (2009). An optical cloak made of dielectrics. Nature Materials, 8(7), 568-571. doi:10.1038/nmat2461 | es_ES |