- -

Synthesis of fractal light pulses by quasi-direct space-to-time pulse shaping

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis of fractal light pulses by quasi-direct space-to-time pulse shaping

Mostrar el registro completo del ítem

Monsoriu Serra, JA.; Mendoza-Yero, O.; Alonso, B.; Minguez-Vega, G.; Sola, I.; Lancis, J. (2012). Synthesis of fractal light pulses by quasi-direct space-to-time pulse shaping. Optics Letters. 37(7):1145-1147. https://doi.org/10.1364/OL.37.001145

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/31366

Ficheros en el ítem

Metadatos del ítem

Título: Synthesis of fractal light pulses by quasi-direct space-to-time pulse shaping
Autor: Monsoriu Serra, Juan Antonio Mendoza-Yero, O. Alonso, B. Minguez-Vega, G. Sola, I.J. Lancis, J.
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] We demonstrated a simple diffractive method to map the self-similar structure shown in squared radial coordinate of any set of circularly symmetric fractal plates into self-similar light pulses in the corresponding ...[+]
Palabras clave: Chemical process , Diffractive lens , Femtoseconds , Kinoform , Light pulse , Material processing , Molecular controls , Nonlinear effect , Pulse-shaping , Radial coordinates , Self-similar , Spatiotemporal characteristics , Spectral interferometry , Temporal domain , Electromagnetic pulse , Light transmission , Plates (structural components) , Fractals
Derechos de uso: Reserva de todos los derechos
Fuente:
Optics Letters. (issn: 0146-9592 )
DOI: 10.1364/OL.37.001145
Editorial:
Optical Society of America
Versión del editor: http://dx.doi.org/10.1364/OL.37.001145
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//DPI2008-02953/ES/DISEÑO Y APLICACIONES DE LENTES DIFRACTIVAS BASADAS EN GEOMETRIAS APERIODICAS: REALIZACION DE NUEVAS LENTES INTRAOCULARES./
info:eu-repo/grantAgreement/MICINN//FIS2010-15746/ES/OPTICA DIFRACTIVA PARA TECNOLOGIA DE FEMTOSEGUNDO: DISPOSITIVOS Y APLICACIONES/
info:eu-repo/grantAgreement/MEC//CSD2007-00013/ES/SCIENCE AND APPLICATIONS OF ULTRAFAST ULTRAINTENSE LASERSfis2004-02404pb92-0451/
info:eu-repo/grantAgreement/UJI//P1·1B2010-26/
Descripción: This paper was published in OPTICS LETTERS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.37.001145. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law
Agradecimientos:
This research was funded by the Spanish Ministerio de Ciencia e Innovación (MICINN) and FEDER, through the projects FIS2010-15746, DPI2008-02953, and SAUUL (CSD2007-00013) and the Fundació Caixa Castelló (P1-1B2010-26).
Tipo: Artículo

References

Berry, M. V. (1979). Diffractals. Journal of Physics A: Mathematical and General, 12(6), 781-797. doi:10.1088/0305-4470/12/6/008

Allain, C., & Cloitre, M. (1987). Spatial spectrum of a general family of self-similar arrays. Physical Review A, 36(12), 5751-5757. doi:10.1103/physreva.36.5751

Hamburger-Lidar, D. A. (1996). Elastic scattering by deterministic and random fractals: Self-affinity of the diffraction spectrum. Physical Review E, 54(1), 354-370. doi:10.1103/physreve.54.354 [+]
Berry, M. V. (1979). Diffractals. Journal of Physics A: Mathematical and General, 12(6), 781-797. doi:10.1088/0305-4470/12/6/008

Allain, C., & Cloitre, M. (1987). Spatial spectrum of a general family of self-similar arrays. Physical Review A, 36(12), 5751-5757. doi:10.1103/physreva.36.5751

Hamburger-Lidar, D. A. (1996). Elastic scattering by deterministic and random fractals: Self-affinity of the diffraction spectrum. Physical Review E, 54(1), 354-370. doi:10.1103/physreve.54.354

Jaggard, A. D., & Jaggard, D. L. (1998). Scattering from fractal superlattices with variable lacunarity. Journal of the Optical Society of America A, 15(6), 1626. doi:10.1364/josaa.15.001626

Fermann, M. E., Kruglov, V. I., Thomsen, B. C., Dudley, J. M., & Harvey, J. D. (2000). Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers. Physical Review Letters, 84(26), 6010-6013. doi:10.1103/physrevlett.84.6010

Kruglov, V. I., Peacock, A. C., Harvey, J. D., & Dudley, J. M. (2002). Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers. Journal of the Optical Society of America B, 19(3), 461. doi:10.1364/josab.19.000461

Ilday, F. Ö., Buckley, J. R., Clark, W. G., & Wise, F. W. (2004). Self-Similar Evolution of Parabolic Pulses in a Laser. Physical Review Letters, 92(21). doi:10.1103/physrevlett.92.213902

Dudley, J. M., Finot, C., Richardson, D. J., & Millot, G. (2007). Self-similarity in ultrafast nonlinear optics. Nature Physics, 3(9), 597-603. doi:10.1038/nphys705

Vinoy, K. J., Jose, K. A., Varadan, V. K., & Varadan, V. V. (2001). Hilbert curve fractal antenna: A small resonant antenna for VHF/UHF applications. Microwave and Optical Technology Letters, 29(4), 215-219. doi:10.1002/mop.1136

Matteo, J. A., & Hesselink, L. (2005). Fractal extensions of near-field aperture shapes for enhanced transmission and resolution. Optics Express, 13(2), 636. doi:10.1364/opex.13.000636

Wang, S.-W., Chen, X., Lu, W., Li, M., & Wang, H. (2007). Fractal independently tunable multichannel filters. Applied Physics Letters, 90(21), 211113. doi:10.1063/1.2743380

Saavedra, G., Furlan, W. D., & Monsoriu, J. A. (2003). Fractal zone plates. Optics Letters, 28(12), 971. doi:10.1364/ol.28.000971

Tao, S. H., Yuan, X.-C., Lin, J., & Burge, R. E. (2006). Sequence of focused optical vortices generated by a spiral fractal zone plate. Applied Physics Letters, 89(3), 031105. doi:10.1063/1.2226995

Furlan, W. D., Giménez, F., Calatayud, A., & Monsoriu, J. A. (2009). Devil’s vortex-lenses. Optics Express, 17(24), 21891. doi:10.1364/oe.17.021891

Furlan, W. D., Saavedra, G., & Monsoriu, J. A. (2007). White-light imaging with fractal zone plates. Optics Letters, 32(15), 2109. doi:10.1364/ol.32.002109

Mendoza-Yero, O., Fernández-Alonso, M., Mínguez-Vega, G., Lancis, J., Climent, V., & Monsoriu, J. A. (2009). Fractal generalized zone plates. Journal of the Optical Society of America A, 26(5), 1161. doi:10.1364/josaa.26.001161

Mendoza-Yero, O., Mínguez-Vega, G., Fernández-Alonso, M., Lancis, J., Tajahuerce, E., Climent, V., & Monsoriu, J. A. (2009). Optical filters with fractal transmission spectra based on diffractive optics. Optics Letters, 34(5), 560. doi:10.1364/ol.34.000560

Lavrinenko, A. V., Zhukovsky, S. V., Sandomirski, K. S., & Gaponenko, S. V. (2002). Propagation of classical waves in nonperiodic media: Scaling properties of an optical Cantor filter. Physical Review E, 65(3). doi:10.1103/physreve.65.036621

Mínguez-Vega, G., Mendoza-Yero, O., Lancis, J., Gisbert, R., & Andrés, P. (2008). Diffractive optics for quasi-direct space-to-time pulse shaping. Optics Express, 16(21), 16993. doi:10.1364/oe.16.016993

Alonso, B., Sola, Í. J., Varela, Ó., Hernández-Toro, J., Méndez, C., San Román, J., … Roso, L. (2010). Spatiotemporal amplitude-and-phase reconstruction by Fourier-transform of interference spectra of high-complex-beams. Journal of the Optical Society of America B, 27(5), 933. doi:10.1364/josab.27.000933

Lepetit, L., Chériaux, G., & Joffre, M. (1995). Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. Journal of the Optical Society of America B, 12(12), 2467. doi:10.1364/josab.12.002467

Kavehrad, M., & Hamzeh, B. Y. (2004). Ultrashort-pulsed FSO communication system with wavelet fractal modulation. Performance, Quality of Service, and Control of Next-Generation Communication Networks II. doi:10.1117/12.570672

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem