- -

Synthesis of fractal light pulses by quasi-direct space-to-time pulse shaping

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis of fractal light pulses by quasi-direct space-to-time pulse shaping

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Monsoriu Serra, Juan Antonio es_ES
dc.contributor.author Mendoza-Yero, O. es_ES
dc.contributor.author Alonso, B. es_ES
dc.contributor.author Minguez-Vega, G. es_ES
dc.contributor.author Sola, I.J. es_ES
dc.contributor.author Lancis, J. es_ES
dc.date.accessioned 2013-07-24T08:33:53Z
dc.date.available 2013-07-24T08:33:53Z
dc.date.issued 2012
dc.identifier.issn 0146-9592
dc.identifier.uri http://hdl.handle.net/10251/31366
dc.description This paper was published in OPTICS LETTERS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.37.001145. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law es_ES
dc.description.abstract [EN] We demonstrated a simple diffractive method to map the self-similar structure shown in squared radial coordinate of any set of circularly symmetric fractal plates into self-similar light pulses in the corresponding temporal domain. The space-to-time mapping of the plates was carried out by means of a kinoform diffractive lens under femtosecond illumination. The spatio-temporal characteristics of the fractal pulses obtained in this way were measured by means of a spectral interferometry technique assisted by a fiber optics coupler (STARFISH). Our proposal allows synthesizing suited sequences of focused fractal femtosecond pulses potentially useful for several current applications, such as femtosecond material processing, atomic, and molecular control of chemical processes or generation of nonlinear effects. © 2012 Optical Society of America. es_ES
dc.description.sponsorship This research was funded by the Spanish Ministerio de Ciencia e Innovación (MICINN) and FEDER, through the projects FIS2010-15746, DPI2008-02953, and SAUUL (CSD2007-00013) and the Fundació Caixa Castelló (P1-1B2010-26). es_ES
dc.language Inglés es_ES
dc.publisher Optical Society of America es_ES
dc.relation.ispartof Optics Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Chemical process es_ES
dc.subject Diffractive lens es_ES
dc.subject Femtoseconds es_ES
dc.subject Kinoform es_ES
dc.subject Light pulse es_ES
dc.subject Material processing es_ES
dc.subject Molecular controls es_ES
dc.subject Nonlinear effect es_ES
dc.subject Pulse-shaping es_ES
dc.subject Radial coordinates es_ES
dc.subject Self-similar es_ES
dc.subject Spatiotemporal characteristics es_ES
dc.subject Spectral interferometry es_ES
dc.subject Temporal domain es_ES
dc.subject Electromagnetic pulse es_ES
dc.subject Light transmission es_ES
dc.subject Plates (structural components) es_ES
dc.subject Fractals es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Synthesis of fractal light pulses by quasi-direct space-to-time pulse shaping es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OL.37.001145
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2008-02953/ES/DISEÑO Y APLICACIONES DE LENTES DIFRACTIVAS BASADAS EN GEOMETRIAS APERIODICAS: REALIZACION DE NUEVAS LENTES INTRAOCULARES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//FIS2010-15746/ES/OPTICA DIFRACTIVA PARA TECNOLOGIA DE FEMTOSEGUNDO: DISPOSITIVOS Y APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00013/ES/SCIENCE AND APPLICATIONS OF ULTRAFAST ULTRAINTENSE LASERSfis2004-02404pb92-0451/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UJI//P1·1B2010-26/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Monsoriu Serra, JA.; Mendoza-Yero, O.; Alonso, B.; Minguez-Vega, G.; Sola, I.; Lancis, J. (2012). Synthesis of fractal light pulses by quasi-direct space-to-time pulse shaping. Optics Letters. 37(7):1145-1147. https://doi.org/10.1364/OL.37.001145 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1364/OL.37.001145 es_ES
dc.description.upvformatpinicio 1145 es_ES
dc.description.upvformatpfin 1147 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 37 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 216822
dc.identifier.pmid 22466176
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Fundació Caixa Castelló - Bancaixa
dc.contributor.funder Universitat Jaume I es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references Berry, M. V. (1979). Diffractals. Journal of Physics A: Mathematical and General, 12(6), 781-797. doi:10.1088/0305-4470/12/6/008 es_ES
dc.description.references Allain, C., & Cloitre, M. (1987). Spatial spectrum of a general family of self-similar arrays. Physical Review A, 36(12), 5751-5757. doi:10.1103/physreva.36.5751 es_ES
dc.description.references Hamburger-Lidar, D. A. (1996). Elastic scattering by deterministic and random fractals: Self-affinity of the diffraction spectrum. Physical Review E, 54(1), 354-370. doi:10.1103/physreve.54.354 es_ES
dc.description.references Jaggard, A. D., & Jaggard, D. L. (1998). Scattering from fractal superlattices with variable lacunarity. Journal of the Optical Society of America A, 15(6), 1626. doi:10.1364/josaa.15.001626 es_ES
dc.description.references Fermann, M. E., Kruglov, V. I., Thomsen, B. C., Dudley, J. M., & Harvey, J. D. (2000). Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers. Physical Review Letters, 84(26), 6010-6013. doi:10.1103/physrevlett.84.6010 es_ES
dc.description.references Kruglov, V. I., Peacock, A. C., Harvey, J. D., & Dudley, J. M. (2002). Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers. Journal of the Optical Society of America B, 19(3), 461. doi:10.1364/josab.19.000461 es_ES
dc.description.references Ilday, F. Ö., Buckley, J. R., Clark, W. G., & Wise, F. W. (2004). Self-Similar Evolution of Parabolic Pulses in a Laser. Physical Review Letters, 92(21). doi:10.1103/physrevlett.92.213902 es_ES
dc.description.references Dudley, J. M., Finot, C., Richardson, D. J., & Millot, G. (2007). Self-similarity in ultrafast nonlinear optics. Nature Physics, 3(9), 597-603. doi:10.1038/nphys705 es_ES
dc.description.references Vinoy, K. J., Jose, K. A., Varadan, V. K., & Varadan, V. V. (2001). Hilbert curve fractal antenna: A small resonant antenna for VHF/UHF applications. Microwave and Optical Technology Letters, 29(4), 215-219. doi:10.1002/mop.1136 es_ES
dc.description.references Matteo, J. A., & Hesselink, L. (2005). Fractal extensions of near-field aperture shapes for enhanced transmission and resolution. Optics Express, 13(2), 636. doi:10.1364/opex.13.000636 es_ES
dc.description.references Wang, S.-W., Chen, X., Lu, W., Li, M., & Wang, H. (2007). Fractal independently tunable multichannel filters. Applied Physics Letters, 90(21), 211113. doi:10.1063/1.2743380 es_ES
dc.description.references Saavedra, G., Furlan, W. D., & Monsoriu, J. A. (2003). Fractal zone plates. Optics Letters, 28(12), 971. doi:10.1364/ol.28.000971 es_ES
dc.description.references Tao, S. H., Yuan, X.-C., Lin, J., & Burge, R. E. (2006). Sequence of focused optical vortices generated by a spiral fractal zone plate. Applied Physics Letters, 89(3), 031105. doi:10.1063/1.2226995 es_ES
dc.description.references Furlan, W. D., Giménez, F., Calatayud, A., & Monsoriu, J. A. (2009). Devil’s vortex-lenses. Optics Express, 17(24), 21891. doi:10.1364/oe.17.021891 es_ES
dc.description.references Furlan, W. D., Saavedra, G., & Monsoriu, J. A. (2007). White-light imaging with fractal zone plates. Optics Letters, 32(15), 2109. doi:10.1364/ol.32.002109 es_ES
dc.description.references Mendoza-Yero, O., Fernández-Alonso, M., Mínguez-Vega, G., Lancis, J., Climent, V., & Monsoriu, J. A. (2009). Fractal generalized zone plates. Journal of the Optical Society of America A, 26(5), 1161. doi:10.1364/josaa.26.001161 es_ES
dc.description.references Mendoza-Yero, O., Mínguez-Vega, G., Fernández-Alonso, M., Lancis, J., Tajahuerce, E., Climent, V., & Monsoriu, J. A. (2009). Optical filters with fractal transmission spectra based on diffractive optics. Optics Letters, 34(5), 560. doi:10.1364/ol.34.000560 es_ES
dc.description.references Lavrinenko, A. V., Zhukovsky, S. V., Sandomirski, K. S., & Gaponenko, S. V. (2002). Propagation of classical waves in nonperiodic media: Scaling properties of an optical Cantor filter. Physical Review E, 65(3). doi:10.1103/physreve.65.036621 es_ES
dc.description.references Mínguez-Vega, G., Mendoza-Yero, O., Lancis, J., Gisbert, R., & Andrés, P. (2008). Diffractive optics for quasi-direct space-to-time pulse shaping. Optics Express, 16(21), 16993. doi:10.1364/oe.16.016993 es_ES
dc.description.references Alonso, B., Sola, Í. J., Varela, Ó., Hernández-Toro, J., Méndez, C., San Román, J., … Roso, L. (2010). Spatiotemporal amplitude-and-phase reconstruction by Fourier-transform of interference spectra of high-complex-beams. Journal of the Optical Society of America B, 27(5), 933. doi:10.1364/josab.27.000933 es_ES
dc.description.references Lepetit, L., Chériaux, G., & Joffre, M. (1995). Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. Journal of the Optical Society of America B, 12(12), 2467. doi:10.1364/josab.12.002467 es_ES
dc.description.references Kavehrad, M., & Hamzeh, B. Y. (2004). Ultrashort-pulsed FSO communication system with wavelet fractal modulation. Performance, Quality of Service, and Control of Next-Generation Communication Networks II. doi:10.1117/12.570672 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem