- -

Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM

Mostrar el registro completo del ítem

Ródenas, J.; González Estrada, OA.; Fuenmayor Fernández, FJ.; Chinesta, F. (2012). Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM. Computational Mechanics. 52(2):321-344. https://doi.org/10.1007/s00466-012-0814-7

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/31482

Ficheros en el ítem

Metadatos del ítem

Título: Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM
Autor: Ródenas, J.J. González Estrada, Octavio Andrés Fuenmayor Fernández, Francisco Javier Chinesta, F.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Centro de Investigación en Tecnología de Vehículos - Centre d'Investigació en Tecnologia de Vehicles
Fecha difusión:
Resumen:
In this paper a new technique aimed to obtain accurate estimates of the error in energy norm using a moving least squares (MLS) recovery-based procedure is presented. In the techniques based on the superconvergent patch ...[+]
Palabras clave: Error estimation , Equilibrated stresses , Stress recovery , Extended finite element method , Moving least squares
Derechos de uso: Reserva de todos los derechos
Fuente:
Computational Mechanics. (issn: 0178-7675 )
DOI: 10.1007/s00466-012-0814-7
Editorial:
Springer Verlag
Versión del editor: http://dx.doi.org/10.1007/s00466-012-0814-7
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/279578/EU/Towards real time multiscale simulation of cutting in non-linear materials with applications to surgical simulation and computer guided surgery/
info:eu-repo/grantAgreement/RCUK/EPSRC/EP/G042705/1/GB/
Agradecimientos:
This work has been carried within the framework of the research project DPI2010-20542 of the Ministerio de Ciencia y e Innovacion (Spain). The financial support of the Universitat Politecnica de Valencia and Generalitat ...[+]
Tipo: Artículo

References

Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Wiley, Chichester

Bangerth W, Rannacher R (2003) Adaptive finite element methods for differential equations. ETH/Birkhäuser, Zürich/Basel

de Almeida JPM, Pereira OJBA (2006) Upper bounds of the error in local quantities using equilibrated and compatible finite element solutions for linear elastic problems. Comput Methods Appl Mech Eng 195(4–6): 279–296 [+]
Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Wiley, Chichester

Bangerth W, Rannacher R (2003) Adaptive finite element methods for differential equations. ETH/Birkhäuser, Zürich/Basel

de Almeida JPM, Pereira OJBA (2006) Upper bounds of the error in local quantities using equilibrated and compatible finite element solutions for linear elastic problems. Comput Methods Appl Mech Eng 195(4–6): 279–296

Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1): 131–150. doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J

Bordas S, Duflot M (2007) Derivative recovery and a posteriori error estimate for extended finite elements. Comput Methods Appl Mech Eng 196(35–36): 3381–3399

Duflot M, Bordas S (2008) A posteriori error estimation for extended finite element by an extended global recovery. Int J Numer Methods Eng 76(8): 1123–1138

Ródenas JJ, González-Estrada OA, Tarancón JE, Fuenmayor FJ (2008) A recovery-type error estimator for the extended finite element method based on singular+smooth stress field splitting. Int J Numer Methods Eng 76(4): 545–571. doi: 10.1002/nme.2313

Ródenas JJ, González-Estrada OA, Díez P, Fuenmayor FJ (2010) Accurate recovery-based upper error bounds for the extended finite element framework. Comput Methods Appl Mech Eng 199(37–40): 2607–2621

Prange C, Loehnert S, Wriggers P (2012) Error estimation for crack simulations using the XFEM. Int J Numer Methods Eng 91: 1459–1474. doi: 10.1002/nme

Strouboulis T, Zhang L, Wang D, Babuška I (2006) A posteriori error estimation for generalized finite element methods. Comput Methods Appl Mech Eng 195(9–12): 852–879

Pannachet T, Sluys LJ, Askes H (2009) Error estimation and adaptivity for discontinuous failure. Int J Numer Methods Eng 78(5): 528–563

Panetier J, Ladevèze P, Chamoin L (2010) Strict and effective bounds in goal-oriented error estimation applied to fracture mechanics problems solved with XFEM. Int J Numer Methods Eng 81(6): 671–700

Panetier J, Ladevèze P, Louf F (2009) Strict bounds for computed stress intensity factors. Comput Struct 87(15–16): 1015–1021. doi: 10.1016/j.compstruc.2008.11.014

Wiberg NE, Abdulwahab F, Ziukas S (1994) Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions. Int J Numer Methods Eng 37(20): 3417–3440

Blacker T, Belytschko T (1994) Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements. Int J Numer Methods Eng 37(3): 517–536

Kvamsdal T, Okstad KM (1998) Error estimation based on superconvergent patch recovery using statically admissible stress fields. Int J Numer Methods Eng 42(3): 443–472

Ródenas JJ, Tur M, Fuenmayor FJ, Vercher A (2007) Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. Int J Numer Methods Eng 70(6): 705–727. doi: 10.1002/nme.1903

Tabbara M, Blacker T, Belytschko T (1994) Finite element derivative recovery by moving least square interpolants. Comput Methods Appl Mech Eng 117(1–2):211–223. doi: 10.1016/0045-7825(94)90084-1

Fleming M, Chu YA, Moran B, Belytschko T (1997) Enriched element-free Galerkin methods for crack tip fields. Int J Numer Methods Eng 40(8): 1483–1504

Xiao QZ, Karihaloo BL (2004) Statically admissible stress recovery using the moving least squares technique. In: Topping BHV, Soares CAM (eds) Progress in computational structures technology. Saxe-Coburg Publications, Stirling, pp 111–138

Xiao QZ, Karihaloo BL (2006) Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery. Int J Numer Methods Eng 66(9): 1378–1410

Huerta A, Vidal Y, Villon P (2004) Pseudo-divergence-free element free Galerkin method for incompressible fluid flow. Comput Methods Appl Mech Eng 193(12–14):1119–1136, doi: 10.1016/j.cma.2003.12.010 . Meshfree methods: recent advances and new applications

Duflot M (2004) Application des méthodes sans maillage en mécanique de la rupture. PhD Thesis, Université de Liège

Díez P, Ródenas JJ, Zienkiewicz OC (2007) Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error. Int J Numer Methods Eng 69(10): 2075–2098. doi: 10.1002/nme.1837

Liu GR (2003) MFree shape function construction. In: Mesh free methods. Moving beyond the finite element method. chap 5. CRC Press, Boca Ratón

Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. 1. Wiley, Chichester

Williams ML (1952) Stress singularities resulting from various boundary conditions in angular corners of plate in extension. J Appl Mech 19: 526–534

Szabó BA, Babuška I (1991) Finite element analysis. Wiley, New York

Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5): 601–620. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S

Ladevèze P, Rougeot P, Blanchard P, Moreau JP (1999) Local error estimators for finite element linear analysis. Comput Methods Appl Mech Eng 176(1–4):231–246. doi: 10.1016/S0045-7825(98)00339-9

Ródenas JJ, Giner E, Tarancón JE, González OA (2006) A recovery error estimator for singular problems using singular+smooth field splitting. In: Topping BHV, Montero G, Montenegro R (eds) Fifth international conference on engineering computational technology. Civil-Comp Press, Stirling

Shih C, Asaro R (1988) Elastic–plastic analysis of cracks on bimaterial interfaces: part I—small scale yielding. J Appl Mech 8: 537–545

Ladevèze P, Marin P, Pelle JP, Gastine JL (1992) Accuracy and optimal meshes in finite element computation for nearly incompressible materials. Comput Methods Appl Mech Eng 94(3): 303–315. doi: 10.1016/0045-7825(92)90057-Q

Coorevits P, Ladevèze P, Pelle JP (1995) An automatic procedure with a control of accuracy for finite element analysis in 2D elasticity. Comput Methods Appl Mech Eng 121: 91–120

Ladevèze P, Leguillon D (1983) Error estimate procedure in the finite element method and applications. SIAM J Numer Anal 20(3): 485–509

Li LY, Bettess P (1995) Notes on mesh optimal criteria in adaptive finite element computations. Commun Numer Methods Eng 11(11): 911–915. doi: 10.1002/cnm.1640111105

Fuenmayor FJ, Oliver JL (1996) Criteria to achieve nearly optimal meshes in the h-adaptive finite element method. Int J Numer Methods Eng 39: 4039–4061

Abel JF, Shephard MS (1979) An algorithm for multipoint constraints in finite element analysis. Int J Numer Methods Eng 14(3): 464–467. doi: 10.1002/nme.1620140312

Farhat C, Lacour C, Rixen D (1998) Incorporation of linear multipoint constraints in substructure based iterative solvers. Part 1: A numerically scalable algorithm. Int J Numer Methods Eng 43(6): 997–1016. doi: 10.1002/(SICI)1097-0207(19981130)43:6<997::AID-NME455>3.0.CO;2-B

Giner E, Fuenmayor FJ, Baeza L, Tarancón JE (2005) Error estimation for the finite element evaluation of G I and G II in mixed-mode linear elastic fracture mechanics. Finite Elements Anal Des 41(11–12): 1079–1104

Shih CF, Moran B, Nakamura T (1986) Energy release rate along a three-dimensional crack front in a thermally stressed body. Int J Fract 30(2): 79–102

Béchet E, Minnebo H, Moës N, Burgardt B (2005) Improved implementation and robustness study of the X-FEM method for stress analysis around cracks. Int J Numer Methods Eng 64(8): 1033–1056. doi: 10.1002/nme.1386

Ventura G (2006) On the elimination of quadrature subcells for discontinuous functions in the extended finite-element method. Int J Numer Methods Eng 66(5): 761–795

Natarajan S, Mahapatra DR, Bordas SPA (2010) Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework. Int J Numer Methods Eng 83(3): 269–294

Chessa J, Wang H, Belytschko T (2003) On the construction of blending elements for local partition of unity enriched finite elements. Int J Numer Methods 57(7): 1015–1038. doi: 10.1002/nme.777

Gracie R, Wang H, Belytschko T (2008) Blending in the extended finite element method by discontinuous Galerkin and assumed strain methods. Int J Numer Methods Eng 74(11): 1645– 1669

Fries T (2008) A corrected XFEM approximation without problems in blending elements. Int J Numer Methods Eng 75(5): 503–532

Tarancón JE, Vercher A, Giner E, Fuenmayor FJ (2009) Enhanced blending elements for XFEM applied to linear elastic fracture mechanics. Int J Numer Methods Eng 77(1): 126–148

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem