Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Wiley, Chichester
Bangerth W, Rannacher R (2003) Adaptive finite element methods for differential equations. ETH/Birkhäuser, Zürich/Basel
de Almeida JPM, Pereira OJBA (2006) Upper bounds of the error in local quantities using equilibrated and compatible finite element solutions for linear elastic problems. Comput Methods Appl Mech Eng 195(4–6): 279–296
[+]
Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Wiley, Chichester
Bangerth W, Rannacher R (2003) Adaptive finite element methods for differential equations. ETH/Birkhäuser, Zürich/Basel
de Almeida JPM, Pereira OJBA (2006) Upper bounds of the error in local quantities using equilibrated and compatible finite element solutions for linear elastic problems. Comput Methods Appl Mech Eng 195(4–6): 279–296
Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1): 131–150. doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
Bordas S, Duflot M (2007) Derivative recovery and a posteriori error estimate for extended finite elements. Comput Methods Appl Mech Eng 196(35–36): 3381–3399
Duflot M, Bordas S (2008) A posteriori error estimation for extended finite element by an extended global recovery. Int J Numer Methods Eng 76(8): 1123–1138
Ródenas JJ, González-Estrada OA, Tarancón JE, Fuenmayor FJ (2008) A recovery-type error estimator for the extended finite element method based on singular+smooth stress field splitting. Int J Numer Methods Eng 76(4): 545–571. doi: 10.1002/nme.2313
Ródenas JJ, González-Estrada OA, Díez P, Fuenmayor FJ (2010) Accurate recovery-based upper error bounds for the extended finite element framework. Comput Methods Appl Mech Eng 199(37–40): 2607–2621
Prange C, Loehnert S, Wriggers P (2012) Error estimation for crack simulations using the XFEM. Int J Numer Methods Eng 91: 1459–1474. doi: 10.1002/nme
Strouboulis T, Zhang L, Wang D, Babuška I (2006) A posteriori error estimation for generalized finite element methods. Comput Methods Appl Mech Eng 195(9–12): 852–879
Pannachet T, Sluys LJ, Askes H (2009) Error estimation and adaptivity for discontinuous failure. Int J Numer Methods Eng 78(5): 528–563
Panetier J, Ladevèze P, Chamoin L (2010) Strict and effective bounds in goal-oriented error estimation applied to fracture mechanics problems solved with XFEM. Int J Numer Methods Eng 81(6): 671–700
Panetier J, Ladevèze P, Louf F (2009) Strict bounds for computed stress intensity factors. Comput Struct 87(15–16): 1015–1021. doi: 10.1016/j.compstruc.2008.11.014
Wiberg NE, Abdulwahab F, Ziukas S (1994) Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions. Int J Numer Methods Eng 37(20): 3417–3440
Blacker T, Belytschko T (1994) Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements. Int J Numer Methods Eng 37(3): 517–536
Kvamsdal T, Okstad KM (1998) Error estimation based on superconvergent patch recovery using statically admissible stress fields. Int J Numer Methods Eng 42(3): 443–472
Ródenas JJ, Tur M, Fuenmayor FJ, Vercher A (2007) Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. Int J Numer Methods Eng 70(6): 705–727. doi: 10.1002/nme.1903
Tabbara M, Blacker T, Belytschko T (1994) Finite element derivative recovery by moving least square interpolants. Comput Methods Appl Mech Eng 117(1–2):211–223. doi: 10.1016/0045-7825(94)90084-1
Fleming M, Chu YA, Moran B, Belytschko T (1997) Enriched element-free Galerkin methods for crack tip fields. Int J Numer Methods Eng 40(8): 1483–1504
Xiao QZ, Karihaloo BL (2004) Statically admissible stress recovery using the moving least squares technique. In: Topping BHV, Soares CAM (eds) Progress in computational structures technology. Saxe-Coburg Publications, Stirling, pp 111–138
Xiao QZ, Karihaloo BL (2006) Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery. Int J Numer Methods Eng 66(9): 1378–1410
Huerta A, Vidal Y, Villon P (2004) Pseudo-divergence-free element free Galerkin method for incompressible fluid flow. Comput Methods Appl Mech Eng 193(12–14):1119–1136, doi: 10.1016/j.cma.2003.12.010 . Meshfree methods: recent advances and new applications
Duflot M (2004) Application des méthodes sans maillage en mécanique de la rupture. PhD Thesis, Université de Liège
Díez P, Ródenas JJ, Zienkiewicz OC (2007) Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error. Int J Numer Methods Eng 69(10): 2075–2098. doi: 10.1002/nme.1837
Liu GR (2003) MFree shape function construction. In: Mesh free methods. Moving beyond the finite element method. chap 5. CRC Press, Boca Ratón
Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. 1. Wiley, Chichester
Williams ML (1952) Stress singularities resulting from various boundary conditions in angular corners of plate in extension. J Appl Mech 19: 526–534
Szabó BA, Babuška I (1991) Finite element analysis. Wiley, New York
Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5): 601–620. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
Ladevèze P, Rougeot P, Blanchard P, Moreau JP (1999) Local error estimators for finite element linear analysis. Comput Methods Appl Mech Eng 176(1–4):231–246. doi: 10.1016/S0045-7825(98)00339-9
Ródenas JJ, Giner E, Tarancón JE, González OA (2006) A recovery error estimator for singular problems using singular+smooth field splitting. In: Topping BHV, Montero G, Montenegro R (eds) Fifth international conference on engineering computational technology. Civil-Comp Press, Stirling
Shih C, Asaro R (1988) Elastic–plastic analysis of cracks on bimaterial interfaces: part I—small scale yielding. J Appl Mech 8: 537–545
Ladevèze P, Marin P, Pelle JP, Gastine JL (1992) Accuracy and optimal meshes in finite element computation for nearly incompressible materials. Comput Methods Appl Mech Eng 94(3): 303–315. doi: 10.1016/0045-7825(92)90057-Q
Coorevits P, Ladevèze P, Pelle JP (1995) An automatic procedure with a control of accuracy for finite element analysis in 2D elasticity. Comput Methods Appl Mech Eng 121: 91–120
Ladevèze P, Leguillon D (1983) Error estimate procedure in the finite element method and applications. SIAM J Numer Anal 20(3): 485–509
Li LY, Bettess P (1995) Notes on mesh optimal criteria in adaptive finite element computations. Commun Numer Methods Eng 11(11): 911–915. doi: 10.1002/cnm.1640111105
Fuenmayor FJ, Oliver JL (1996) Criteria to achieve nearly optimal meshes in the h-adaptive finite element method. Int J Numer Methods Eng 39: 4039–4061
Abel JF, Shephard MS (1979) An algorithm for multipoint constraints in finite element analysis. Int J Numer Methods Eng 14(3): 464–467. doi: 10.1002/nme.1620140312
Farhat C, Lacour C, Rixen D (1998) Incorporation of linear multipoint constraints in substructure based iterative solvers. Part 1: A numerically scalable algorithm. Int J Numer Methods Eng 43(6): 997–1016. doi: 10.1002/(SICI)1097-0207(19981130)43:6<997::AID-NME455>3.0.CO;2-B
Giner E, Fuenmayor FJ, Baeza L, Tarancón JE (2005) Error estimation for the finite element evaluation of G I and G II in mixed-mode linear elastic fracture mechanics. Finite Elements Anal Des 41(11–12): 1079–1104
Shih CF, Moran B, Nakamura T (1986) Energy release rate along a three-dimensional crack front in a thermally stressed body. Int J Fract 30(2): 79–102
Béchet E, Minnebo H, Moës N, Burgardt B (2005) Improved implementation and robustness study of the X-FEM method for stress analysis around cracks. Int J Numer Methods Eng 64(8): 1033–1056. doi: 10.1002/nme.1386
Ventura G (2006) On the elimination of quadrature subcells for discontinuous functions in the extended finite-element method. Int J Numer Methods Eng 66(5): 761–795
Natarajan S, Mahapatra DR, Bordas SPA (2010) Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework. Int J Numer Methods Eng 83(3): 269–294
Chessa J, Wang H, Belytschko T (2003) On the construction of blending elements for local partition of unity enriched finite elements. Int J Numer Methods 57(7): 1015–1038. doi: 10.1002/nme.777
Gracie R, Wang H, Belytschko T (2008) Blending in the extended finite element method by discontinuous Galerkin and assumed strain methods. Int J Numer Methods Eng 74(11): 1645– 1669
Fries T (2008) A corrected XFEM approximation without problems in blending elements. Int J Numer Methods Eng 75(5): 503–532
Tarancón JE, Vercher A, Giner E, Fuenmayor FJ (2009) Enhanced blending elements for XFEM applied to linear elastic fracture mechanics. Int J Numer Methods Eng 77(1): 126–148
[-]