Mostrar el registro sencillo del ítem
dc.contributor.author | Ródenas, J.J. | es_ES |
dc.contributor.author | González Estrada, Octavio Andrés | es_ES |
dc.contributor.author | Fuenmayor Fernández, Francisco Javier | es_ES |
dc.contributor.author | Chinesta, F. | es_ES |
dc.date.accessioned | 2013-07-26T09:09:16Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0178-7675 | |
dc.identifier.uri | http://hdl.handle.net/10251/31482 | |
dc.description.abstract | In this paper a new technique aimed to obtain accurate estimates of the error in energy norm using a moving least squares (MLS) recovery-based procedure is presented. In the techniques based on the superconvergent patch recovery (SPR) the continuity of the recovered field is provided by the shape functions of the underlying mesh. We explore the capabilities of a recovery technique based on an MLS fitting, more flexible than SPR techniques as it directly provides continuous interpolated fields without relying on any FE mesh, to obtain estimates of the error in energy norm as an alternative to SPR. In the enhanced MLS proposed in the paper, boundary equilibrium is enforced using a nearest point approach that modifies the MLS functional. Lagrange multipliers are used to impose a nearly exact satisfaction of the internal equilibrium equation. The numerical results indicate the high accuracy of the proposed error. | es_ES |
dc.description.sponsorship | This work has been carried within the framework of the research project DPI2010-20542 of the Ministerio de Ciencia y e Innovacion (Spain). The financial support of the Universitat Politecnica de Valencia and Generalitat Valenciana (PROMETEO/2012/023) is also acknowledged. Support from the EPSRC grant EP/G042705/1 "Increased Reliability for Industrially Relevant Automatic Crack Growth Simulation with the eXtended Finite Element Method", the European Research Council Starting Independent Research Grant (ERC Stg grant agreement No. 279578) "RealTCut Towards real time multi-scale simulation of cutting in non-linear materials with applications to surgical simulation and computer guided surgery" and partial support of the Framework Programme 7 Initial Training Network Funding under grant number 289361 "Integrating Numerical Simulation and Geometric Design Technology (INSIST)" are acknowledged. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag | es_ES |
dc.relation.ispartof | Computational Mechanics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Error estimation | es_ES |
dc.subject | Equilibrated stresses | es_ES |
dc.subject | Stress recovery | es_ES |
dc.subject | Extended finite element method | es_ES |
dc.subject | Moving least squares | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1007/s00466-012-0814-7 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/279578/EU/Towards real time multiscale simulation of cutting in non-linear materials with applications to surgical simulation and computer guided surgery/ | en_EN |
dc.relation.projectID | info:eu-repo/grantAgreement/RCUK/EPSRC/EP/G042705/1/GB/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Investigación en Tecnología de Vehículos - Centre d'Investigació en Tecnologia de Vehicles | es_ES |
dc.description.bibliographicCitation | Ródenas, J.; González Estrada, OA.; Fuenmayor Fernández, FJ.; Chinesta, F. (2012). Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM. Computational Mechanics. 52(2):321-344. https://doi.org/10.1007/s00466-012-0814-7 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s00466-012-0814-7 | es_ES |
dc.description.upvformatpinicio | 321 | es_ES |
dc.description.upvformatpfin | 344 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 52 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 237753 | |
dc.description.references | Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Wiley, Chichester | es_ES |
dc.description.references | Bangerth W, Rannacher R (2003) Adaptive finite element methods for differential equations. ETH/Birkhäuser, Zürich/Basel | es_ES |
dc.description.references | de Almeida JPM, Pereira OJBA (2006) Upper bounds of the error in local quantities using equilibrated and compatible finite element solutions for linear elastic problems. Comput Methods Appl Mech Eng 195(4–6): 279–296 | es_ES |
dc.description.references | Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1): 131–150. doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J | es_ES |
dc.description.references | Bordas S, Duflot M (2007) Derivative recovery and a posteriori error estimate for extended finite elements. Comput Methods Appl Mech Eng 196(35–36): 3381–3399 | es_ES |
dc.description.references | Duflot M, Bordas S (2008) A posteriori error estimation for extended finite element by an extended global recovery. Int J Numer Methods Eng 76(8): 1123–1138 | es_ES |
dc.description.references | Ródenas JJ, González-Estrada OA, Tarancón JE, Fuenmayor FJ (2008) A recovery-type error estimator for the extended finite element method based on singular+smooth stress field splitting. Int J Numer Methods Eng 76(4): 545–571. doi: 10.1002/nme.2313 | es_ES |
dc.description.references | Ródenas JJ, González-Estrada OA, Díez P, Fuenmayor FJ (2010) Accurate recovery-based upper error bounds for the extended finite element framework. Comput Methods Appl Mech Eng 199(37–40): 2607–2621 | es_ES |
dc.description.references | Prange C, Loehnert S, Wriggers P (2012) Error estimation for crack simulations using the XFEM. Int J Numer Methods Eng 91: 1459–1474. doi: 10.1002/nme | es_ES |
dc.description.references | Strouboulis T, Zhang L, Wang D, Babuška I (2006) A posteriori error estimation for generalized finite element methods. Comput Methods Appl Mech Eng 195(9–12): 852–879 | es_ES |
dc.description.references | Pannachet T, Sluys LJ, Askes H (2009) Error estimation and adaptivity for discontinuous failure. Int J Numer Methods Eng 78(5): 528–563 | es_ES |
dc.description.references | Panetier J, Ladevèze P, Chamoin L (2010) Strict and effective bounds in goal-oriented error estimation applied to fracture mechanics problems solved with XFEM. Int J Numer Methods Eng 81(6): 671–700 | es_ES |
dc.description.references | Panetier J, Ladevèze P, Louf F (2009) Strict bounds for computed stress intensity factors. Comput Struct 87(15–16): 1015–1021. doi: 10.1016/j.compstruc.2008.11.014 | es_ES |
dc.description.references | Wiberg NE, Abdulwahab F, Ziukas S (1994) Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions. Int J Numer Methods Eng 37(20): 3417–3440 | es_ES |
dc.description.references | Blacker T, Belytschko T (1994) Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements. Int J Numer Methods Eng 37(3): 517–536 | es_ES |
dc.description.references | Kvamsdal T, Okstad KM (1998) Error estimation based on superconvergent patch recovery using statically admissible stress fields. Int J Numer Methods Eng 42(3): 443–472 | es_ES |
dc.description.references | Ródenas JJ, Tur M, Fuenmayor FJ, Vercher A (2007) Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. Int J Numer Methods Eng 70(6): 705–727. doi: 10.1002/nme.1903 | es_ES |
dc.description.references | Tabbara M, Blacker T, Belytschko T (1994) Finite element derivative recovery by moving least square interpolants. Comput Methods Appl Mech Eng 117(1–2):211–223. doi: 10.1016/0045-7825(94)90084-1 | es_ES |
dc.description.references | Fleming M, Chu YA, Moran B, Belytschko T (1997) Enriched element-free Galerkin methods for crack tip fields. Int J Numer Methods Eng 40(8): 1483–1504 | es_ES |
dc.description.references | Xiao QZ, Karihaloo BL (2004) Statically admissible stress recovery using the moving least squares technique. In: Topping BHV, Soares CAM (eds) Progress in computational structures technology. Saxe-Coburg Publications, Stirling, pp 111–138 | es_ES |
dc.description.references | Xiao QZ, Karihaloo BL (2006) Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery. Int J Numer Methods Eng 66(9): 1378–1410 | es_ES |
dc.description.references | Huerta A, Vidal Y, Villon P (2004) Pseudo-divergence-free element free Galerkin method for incompressible fluid flow. Comput Methods Appl Mech Eng 193(12–14):1119–1136, doi: 10.1016/j.cma.2003.12.010 . Meshfree methods: recent advances and new applications | es_ES |
dc.description.references | Duflot M (2004) Application des méthodes sans maillage en mécanique de la rupture. PhD Thesis, Université de Liège | es_ES |
dc.description.references | Díez P, Ródenas JJ, Zienkiewicz OC (2007) Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error. Int J Numer Methods Eng 69(10): 2075–2098. doi: 10.1002/nme.1837 | es_ES |
dc.description.references | Liu GR (2003) MFree shape function construction. In: Mesh free methods. Moving beyond the finite element method. chap 5. CRC Press, Boca Ratón | es_ES |
dc.description.references | Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. 1. Wiley, Chichester | es_ES |
dc.description.references | Williams ML (1952) Stress singularities resulting from various boundary conditions in angular corners of plate in extension. J Appl Mech 19: 526–534 | es_ES |
dc.description.references | Szabó BA, Babuška I (1991) Finite element analysis. Wiley, New York | es_ES |
dc.description.references | Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5): 601–620. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S | es_ES |
dc.description.references | Ladevèze P, Rougeot P, Blanchard P, Moreau JP (1999) Local error estimators for finite element linear analysis. Comput Methods Appl Mech Eng 176(1–4):231–246. doi: 10.1016/S0045-7825(98)00339-9 | es_ES |
dc.description.references | Ródenas JJ, Giner E, Tarancón JE, González OA (2006) A recovery error estimator for singular problems using singular+smooth field splitting. In: Topping BHV, Montero G, Montenegro R (eds) Fifth international conference on engineering computational technology. Civil-Comp Press, Stirling | es_ES |
dc.description.references | Shih C, Asaro R (1988) Elastic–plastic analysis of cracks on bimaterial interfaces: part I—small scale yielding. J Appl Mech 8: 537–545 | es_ES |
dc.description.references | Ladevèze P, Marin P, Pelle JP, Gastine JL (1992) Accuracy and optimal meshes in finite element computation for nearly incompressible materials. Comput Methods Appl Mech Eng 94(3): 303–315. doi: 10.1016/0045-7825(92)90057-Q | es_ES |
dc.description.references | Coorevits P, Ladevèze P, Pelle JP (1995) An automatic procedure with a control of accuracy for finite element analysis in 2D elasticity. Comput Methods Appl Mech Eng 121: 91–120 | es_ES |
dc.description.references | Ladevèze P, Leguillon D (1983) Error estimate procedure in the finite element method and applications. SIAM J Numer Anal 20(3): 485–509 | es_ES |
dc.description.references | Li LY, Bettess P (1995) Notes on mesh optimal criteria in adaptive finite element computations. Commun Numer Methods Eng 11(11): 911–915. doi: 10.1002/cnm.1640111105 | es_ES |
dc.description.references | Fuenmayor FJ, Oliver JL (1996) Criteria to achieve nearly optimal meshes in the h-adaptive finite element method. Int J Numer Methods Eng 39: 4039–4061 | es_ES |
dc.description.references | Abel JF, Shephard MS (1979) An algorithm for multipoint constraints in finite element analysis. Int J Numer Methods Eng 14(3): 464–467. doi: 10.1002/nme.1620140312 | es_ES |
dc.description.references | Farhat C, Lacour C, Rixen D (1998) Incorporation of linear multipoint constraints in substructure based iterative solvers. Part 1: A numerically scalable algorithm. Int J Numer Methods Eng 43(6): 997–1016. doi: 10.1002/(SICI)1097-0207(19981130)43:6<997::AID-NME455>3.0.CO;2-B | es_ES |
dc.description.references | Giner E, Fuenmayor FJ, Baeza L, Tarancón JE (2005) Error estimation for the finite element evaluation of G I and G II in mixed-mode linear elastic fracture mechanics. Finite Elements Anal Des 41(11–12): 1079–1104 | es_ES |
dc.description.references | Shih CF, Moran B, Nakamura T (1986) Energy release rate along a three-dimensional crack front in a thermally stressed body. Int J Fract 30(2): 79–102 | es_ES |
dc.description.references | Béchet E, Minnebo H, Moës N, Burgardt B (2005) Improved implementation and robustness study of the X-FEM method for stress analysis around cracks. Int J Numer Methods Eng 64(8): 1033–1056. doi: 10.1002/nme.1386 | es_ES |
dc.description.references | Ventura G (2006) On the elimination of quadrature subcells for discontinuous functions in the extended finite-element method. Int J Numer Methods Eng 66(5): 761–795 | es_ES |
dc.description.references | Natarajan S, Mahapatra DR, Bordas SPA (2010) Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework. Int J Numer Methods Eng 83(3): 269–294 | es_ES |
dc.description.references | Chessa J, Wang H, Belytschko T (2003) On the construction of blending elements for local partition of unity enriched finite elements. Int J Numer Methods 57(7): 1015–1038. doi: 10.1002/nme.777 | es_ES |
dc.description.references | Gracie R, Wang H, Belytschko T (2008) Blending in the extended finite element method by discontinuous Galerkin and assumed strain methods. Int J Numer Methods Eng 74(11): 1645– 1669 | es_ES |
dc.description.references | Fries T (2008) A corrected XFEM approximation without problems in blending elements. Int J Numer Methods Eng 75(5): 503–532 | es_ES |
dc.description.references | Tarancón JE, Vercher A, Giner E, Fuenmayor FJ (2009) Enhanced blending elements for XFEM applied to linear elastic fracture mechanics. Int J Numer Methods Eng 77(1): 126–148 | es_ES |