- -

Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ródenas, J.J. es_ES
dc.contributor.author González Estrada, Octavio Andrés es_ES
dc.contributor.author Fuenmayor Fernández, Francisco Javier es_ES
dc.contributor.author Chinesta, F. es_ES
dc.date.accessioned 2013-07-26T09:09:16Z
dc.date.issued 2012
dc.identifier.issn 0178-7675
dc.identifier.uri http://hdl.handle.net/10251/31482
dc.description.abstract In this paper a new technique aimed to obtain accurate estimates of the error in energy norm using a moving least squares (MLS) recovery-based procedure is presented. In the techniques based on the superconvergent patch recovery (SPR) the continuity of the recovered field is provided by the shape functions of the underlying mesh. We explore the capabilities of a recovery technique based on an MLS fitting, more flexible than SPR techniques as it directly provides continuous interpolated fields without relying on any FE mesh, to obtain estimates of the error in energy norm as an alternative to SPR. In the enhanced MLS proposed in the paper, boundary equilibrium is enforced using a nearest point approach that modifies the MLS functional. Lagrange multipliers are used to impose a nearly exact satisfaction of the internal equilibrium equation. The numerical results indicate the high accuracy of the proposed error. es_ES
dc.description.sponsorship This work has been carried within the framework of the research project DPI2010-20542 of the Ministerio de Ciencia y e Innovacion (Spain). The financial support of the Universitat Politecnica de Valencia and Generalitat Valenciana (PROMETEO/2012/023) is also acknowledged. Support from the EPSRC grant EP/G042705/1 "Increased Reliability for Industrially Relevant Automatic Crack Growth Simulation with the eXtended Finite Element Method", the European Research Council Starting Independent Research Grant (ERC Stg grant agreement No. 279578) "RealTCut Towards real time multi-scale simulation of cutting in non-linear materials with applications to surgical simulation and computer guided surgery" and partial support of the Framework Programme 7 Initial Training Network Funding under grant number 289361 "Integrating Numerical Simulation and Geometric Design Technology (INSIST)" are acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag es_ES
dc.relation.ispartof Computational Mechanics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Error estimation es_ES
dc.subject Equilibrated stresses es_ES
dc.subject Stress recovery es_ES
dc.subject Extended finite element method es_ES
dc.subject Moving least squares es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1007/s00466-012-0814-7
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/279578/EU/Towards real time multiscale simulation of cutting in non-linear materials with applications to surgical simulation and computer guided surgery/ en_EN
dc.relation.projectID info:eu-repo/grantAgreement/RCUK/EPSRC/EP/G042705/1/GB/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Investigación en Tecnología de Vehículos - Centre d'Investigació en Tecnologia de Vehicles es_ES
dc.description.bibliographicCitation Ródenas, J.; González Estrada, OA.; Fuenmayor Fernández, FJ.; Chinesta, F. (2012). Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM. Computational Mechanics. 52(2):321-344. https://doi.org/10.1007/s00466-012-0814-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s00466-012-0814-7 es_ES
dc.description.upvformatpinicio 321 es_ES
dc.description.upvformatpfin 344 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 52 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 237753
dc.description.references Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Wiley, Chichester es_ES
dc.description.references Bangerth W, Rannacher R (2003) Adaptive finite element methods for differential equations. ETH/Birkhäuser, Zürich/Basel es_ES
dc.description.references de Almeida JPM, Pereira OJBA (2006) Upper bounds of the error in local quantities using equilibrated and compatible finite element solutions for linear elastic problems. Comput Methods Appl Mech Eng 195(4–6): 279–296 es_ES
dc.description.references Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1): 131–150. doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J es_ES
dc.description.references Bordas S, Duflot M (2007) Derivative recovery and a posteriori error estimate for extended finite elements. Comput Methods Appl Mech Eng 196(35–36): 3381–3399 es_ES
dc.description.references Duflot M, Bordas S (2008) A posteriori error estimation for extended finite element by an extended global recovery. Int J Numer Methods Eng 76(8): 1123–1138 es_ES
dc.description.references Ródenas JJ, González-Estrada OA, Tarancón JE, Fuenmayor FJ (2008) A recovery-type error estimator for the extended finite element method based on singular+smooth stress field splitting. Int J Numer Methods Eng 76(4): 545–571. doi: 10.1002/nme.2313 es_ES
dc.description.references Ródenas JJ, González-Estrada OA, Díez P, Fuenmayor FJ (2010) Accurate recovery-based upper error bounds for the extended finite element framework. Comput Methods Appl Mech Eng 199(37–40): 2607–2621 es_ES
dc.description.references Prange C, Loehnert S, Wriggers P (2012) Error estimation for crack simulations using the XFEM. Int J Numer Methods Eng 91: 1459–1474. doi: 10.1002/nme es_ES
dc.description.references Strouboulis T, Zhang L, Wang D, Babuška I (2006) A posteriori error estimation for generalized finite element methods. Comput Methods Appl Mech Eng 195(9–12): 852–879 es_ES
dc.description.references Pannachet T, Sluys LJ, Askes H (2009) Error estimation and adaptivity for discontinuous failure. Int J Numer Methods Eng 78(5): 528–563 es_ES
dc.description.references Panetier J, Ladevèze P, Chamoin L (2010) Strict and effective bounds in goal-oriented error estimation applied to fracture mechanics problems solved with XFEM. Int J Numer Methods Eng 81(6): 671–700 es_ES
dc.description.references Panetier J, Ladevèze P, Louf F (2009) Strict bounds for computed stress intensity factors. Comput Struct 87(15–16): 1015–1021. doi: 10.1016/j.compstruc.2008.11.014 es_ES
dc.description.references Wiberg NE, Abdulwahab F, Ziukas S (1994) Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions. Int J Numer Methods Eng 37(20): 3417–3440 es_ES
dc.description.references Blacker T, Belytschko T (1994) Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements. Int J Numer Methods Eng 37(3): 517–536 es_ES
dc.description.references Kvamsdal T, Okstad KM (1998) Error estimation based on superconvergent patch recovery using statically admissible stress fields. Int J Numer Methods Eng 42(3): 443–472 es_ES
dc.description.references Ródenas JJ, Tur M, Fuenmayor FJ, Vercher A (2007) Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. Int J Numer Methods Eng 70(6): 705–727. doi: 10.1002/nme.1903 es_ES
dc.description.references Tabbara M, Blacker T, Belytschko T (1994) Finite element derivative recovery by moving least square interpolants. Comput Methods Appl Mech Eng 117(1–2):211–223. doi: 10.1016/0045-7825(94)90084-1 es_ES
dc.description.references Fleming M, Chu YA, Moran B, Belytschko T (1997) Enriched element-free Galerkin methods for crack tip fields. Int J Numer Methods Eng 40(8): 1483–1504 es_ES
dc.description.references Xiao QZ, Karihaloo BL (2004) Statically admissible stress recovery using the moving least squares technique. In: Topping BHV, Soares CAM (eds) Progress in computational structures technology. Saxe-Coburg Publications, Stirling, pp 111–138 es_ES
dc.description.references Xiao QZ, Karihaloo BL (2006) Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery. Int J Numer Methods Eng 66(9): 1378–1410 es_ES
dc.description.references Huerta A, Vidal Y, Villon P (2004) Pseudo-divergence-free element free Galerkin method for incompressible fluid flow. Comput Methods Appl Mech Eng 193(12–14):1119–1136, doi: 10.1016/j.cma.2003.12.010 . Meshfree methods: recent advances and new applications es_ES
dc.description.references Duflot M (2004) Application des méthodes sans maillage en mécanique de la rupture. PhD Thesis, Université de Liège es_ES
dc.description.references Díez P, Ródenas JJ, Zienkiewicz OC (2007) Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error. Int J Numer Methods Eng 69(10): 2075–2098. doi: 10.1002/nme.1837 es_ES
dc.description.references Liu GR (2003) MFree shape function construction. In: Mesh free methods. Moving beyond the finite element method. chap 5. CRC Press, Boca Ratón es_ES
dc.description.references Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. 1. Wiley, Chichester es_ES
dc.description.references Williams ML (1952) Stress singularities resulting from various boundary conditions in angular corners of plate in extension. J Appl Mech 19: 526–534 es_ES
dc.description.references Szabó BA, Babuška I (1991) Finite element analysis. Wiley, New York es_ES
dc.description.references Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5): 601–620. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S es_ES
dc.description.references Ladevèze P, Rougeot P, Blanchard P, Moreau JP (1999) Local error estimators for finite element linear analysis. Comput Methods Appl Mech Eng 176(1–4):231–246. doi: 10.1016/S0045-7825(98)00339-9 es_ES
dc.description.references Ródenas JJ, Giner E, Tarancón JE, González OA (2006) A recovery error estimator for singular problems using singular+smooth field splitting. In: Topping BHV, Montero G, Montenegro R (eds) Fifth international conference on engineering computational technology. Civil-Comp Press, Stirling es_ES
dc.description.references Shih C, Asaro R (1988) Elastic–plastic analysis of cracks on bimaterial interfaces: part I—small scale yielding. J Appl Mech 8: 537–545 es_ES
dc.description.references Ladevèze P, Marin P, Pelle JP, Gastine JL (1992) Accuracy and optimal meshes in finite element computation for nearly incompressible materials. Comput Methods Appl Mech Eng 94(3): 303–315. doi: 10.1016/0045-7825(92)90057-Q es_ES
dc.description.references Coorevits P, Ladevèze P, Pelle JP (1995) An automatic procedure with a control of accuracy for finite element analysis in 2D elasticity. Comput Methods Appl Mech Eng 121: 91–120 es_ES
dc.description.references Ladevèze P, Leguillon D (1983) Error estimate procedure in the finite element method and applications. SIAM J Numer Anal 20(3): 485–509 es_ES
dc.description.references Li LY, Bettess P (1995) Notes on mesh optimal criteria in adaptive finite element computations. Commun Numer Methods Eng 11(11): 911–915. doi: 10.1002/cnm.1640111105 es_ES
dc.description.references Fuenmayor FJ, Oliver JL (1996) Criteria to achieve nearly optimal meshes in the h-adaptive finite element method. Int J Numer Methods Eng 39: 4039–4061 es_ES
dc.description.references Abel JF, Shephard MS (1979) An algorithm for multipoint constraints in finite element analysis. Int J Numer Methods Eng 14(3): 464–467. doi: 10.1002/nme.1620140312 es_ES
dc.description.references Farhat C, Lacour C, Rixen D (1998) Incorporation of linear multipoint constraints in substructure based iterative solvers. Part 1: A numerically scalable algorithm. Int J Numer Methods Eng 43(6): 997–1016. doi: 10.1002/(SICI)1097-0207(19981130)43:6<997::AID-NME455>3.0.CO;2-B es_ES
dc.description.references Giner E, Fuenmayor FJ, Baeza L, Tarancón JE (2005) Error estimation for the finite element evaluation of G I and G II in mixed-mode linear elastic fracture mechanics. Finite Elements Anal Des 41(11–12): 1079–1104 es_ES
dc.description.references Shih CF, Moran B, Nakamura T (1986) Energy release rate along a three-dimensional crack front in a thermally stressed body. Int J Fract 30(2): 79–102 es_ES
dc.description.references Béchet E, Minnebo H, Moës N, Burgardt B (2005) Improved implementation and robustness study of the X-FEM method for stress analysis around cracks. Int J Numer Methods Eng 64(8): 1033–1056. doi: 10.1002/nme.1386 es_ES
dc.description.references Ventura G (2006) On the elimination of quadrature subcells for discontinuous functions in the extended finite-element method. Int J Numer Methods Eng 66(5): 761–795 es_ES
dc.description.references Natarajan S, Mahapatra DR, Bordas SPA (2010) Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework. Int J Numer Methods Eng 83(3): 269–294 es_ES
dc.description.references Chessa J, Wang H, Belytschko T (2003) On the construction of blending elements for local partition of unity enriched finite elements. Int J Numer Methods 57(7): 1015–1038. doi: 10.1002/nme.777 es_ES
dc.description.references Gracie R, Wang H, Belytschko T (2008) Blending in the extended finite element method by discontinuous Galerkin and assumed strain methods. Int J Numer Methods Eng 74(11): 1645– 1669 es_ES
dc.description.references Fries T (2008) A corrected XFEM approximation without problems in blending elements. Int J Numer Methods Eng 75(5): 503–532 es_ES
dc.description.references Tarancón JE, Vercher A, Giner E, Fuenmayor FJ (2009) Enhanced blending elements for XFEM applied to linear elastic fracture mechanics. Int J Numer Methods Eng 77(1): 126–148 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem