- -

New ionic liquids from azepane and 3-methylpiperidine exhibiting wide electrochemical windows

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

New ionic liquids from azepane and 3-methylpiperidine exhibiting wide electrochemical windows

Show full item record

Belhocine, T.; Forsyth, SA.; Gunaratne, HQN.; Nieuwenhuyzen, M.; Vaca Puga, A.; Seddon, KR.; Srinivasan, G.... (2011). New ionic liquids from azepane and 3-methylpiperidine exhibiting wide electrochemical windows. Green Chemistry. 13(1):59-63. doi:10.1039/c0gc00534g

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/31667

Files in this item

Item Metadata

Title: New ionic liquids from azepane and 3-methylpiperidine exhibiting wide electrochemical windows
Author:
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
New ionic liquids based on azepanium and 3-methylpiperidinium cations have been synthesised; they exhibit moderate viscosities and remarkably wide electrochemical windows, thereby showing promise, inter alia, as electrolytes ...[+]
Copyrigths: Cerrado
Source:
Green Chemistry. (issn: 1463-9262 )
DOI: 10.1039/c0gc00534g
Publisher:
Royal Society of Chemistry
Publisher version: http://dx.doi.org/10.1039/c0gc00534g
Type: Artículo

References

Wilkes, J. S., Levisky, J. A., Wilson, R. A., & Hussey, C. L. (1982). Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorganic Chemistry, 21(3), 1263-1264. doi:10.1021/ic00133a078

Wilkes, J. S. (2002). A short history of ionic liquids—from molten salts to neoteric solvents. Green Chemistry, 4(2), 73-80. doi:10.1039/b110838g

Hurley, F. H., & WIer, T. P. (1951). Electrodeposition of Metals from Fused Quaternary Ammonium Salts. Journal of The Electrochemical Society, 98(5), 203. doi:10.1149/1.2778132 [+]
Wilkes, J. S., Levisky, J. A., Wilson, R. A., & Hussey, C. L. (1982). Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorganic Chemistry, 21(3), 1263-1264. doi:10.1021/ic00133a078

Wilkes, J. S. (2002). A short history of ionic liquids—from molten salts to neoteric solvents. Green Chemistry, 4(2), 73-80. doi:10.1039/b110838g

Hurley, F. H., & WIer, T. P. (1951). Electrodeposition of Metals from Fused Quaternary Ammonium Salts. Journal of The Electrochemical Society, 98(5), 203. doi:10.1149/1.2778132

Hurley, F. H., & WIer, T. P. (1951). The Electrodeposition of Aluminum from Nonaqueous Solutions at Room Temperature. Journal of The Electrochemical Society, 98(5), 207. doi:10.1149/1.2778133

H. Ohno (ed.), ‘Ionic Liquids: The Front and Future of Material Development’, CMC Press, Tokyo, 2003

H. Ohno (ed.), ‘Electrochemical Aspects of Ionic Liquids’, Wiley-Interscience, Hoboken, 2005

Galiński, M., Lewandowski, A., & Stępniak, I. (2006). Ionic liquids as electrolytes. Electrochimica Acta, 51(26), 5567-5580. doi:10.1016/j.electacta.2006.03.016

Armand, M., Endres, F., MacFarlane, D. R., Ohno, H., & Scrosati, B. (2009). Ionic-liquid materials for the electrochemical challenges of the future. Nature Materials, 8(8), 621-629. doi:10.1038/nmat2448

MacFarlane, D. R., Huang, J., & Forsyth, M. (1999). Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries. Nature, 402(6763), 792-794. doi:10.1038/45514

Buzzeo, M. C., Evans, R. G., & Compton, R. G. (2004). Non-Haloaluminate Room-Temperature Ionic Liquids in Electrochemistry—A Review. ChemPhysChem, 5(8), 1106-1120. doi:10.1002/cphc.200301017

F. Endres, D. MacFarlane and A. Abbott (ed.), ‘Electrodeposition from Ionic Liquids’, Wiley-VCH, Weinheim, 2008

D. Teramoto , R.Yokoyama, H.Kagawa, T.Sada and N.Ogata, in ‘Molten salts and ionic liquids: never the Twain?’ ed. M. Gaune-Escard and K. R. Seddon, John Wiley & Sons, Inc., Hoboken, 2010

Bonhôte, P., Dias, A.-P., Papageorgiou, N., Kalyanasundaram, K., & Grätzel, M. (1996). Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts†. Inorganic Chemistry, 35(5), 1168-1178. doi:10.1021/ic951325x

Buzzeo, M. C., Hardacre, C., & Compton, R. G. (2006). Extended Electrochemical Windows Made Accessible by Room Temperature Ionic Liquid/Organic Solvent Electrolyte Systems. ChemPhysChem, 7(1), 176-180. doi:10.1002/cphc.200500361

MacFarlane, D. R., Meakin, P., Sun, J., Amini, N., & Forsyth, M. (1999). Pyrrolidinium Imides:  A New Family of Molten Salts and Conductive Plastic Crystal Phases. The Journal of Physical Chemistry B, 103(20), 4164-4170. doi:10.1021/jp984145s

Sun, J., Forsyth, M., & MacFarlane, D. R. (1998). Room-Temperature Molten Salts Based on the Quaternary Ammonium Ion. The Journal of Physical Chemistry B, 102(44), 8858-8864. doi:10.1021/jp981159p

Sakaebe, H., & Matsumoto, H. (2003). N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13–TFSI) – novel electrolyte base for Li battery. Electrochemistry Communications, 5(7), 594-598. doi:10.1016/s1388-2481(03)00137-1

Alunni, S., & Tijskens, P. (1995). Study on the Effect of the Structure of the Leaving Group in the E1cb Mechanism of Base-Promoted .beta.-Elimination Reactions from N-[2-(p-Nitrophenyl)ethyl]alkylammonium Ions. The Journal of Organic Chemistry, 60(26), 8371-8374. doi:10.1021/jo00131a011

Van den Berg, J.-A., & Seddon, K. R. (2003). Critical Evaluation of C−H···X Hydrogen Bonding in the Crystalline State. Crystal Growth & Design, 3(5), 643-661. doi:10.1021/cg034083h

Bondi, A. (1964). van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68(3), 441-451. doi:10.1021/j100785a001

G. R. Desiraju , ‘Crystal Engineering. The Design of Organic Solids’, Elsevier, Amsterdam, 1989

Aakeröy, C. B., & Seddon, K. R. (1993). The hydrogen bond and crystal engineering. Chem. Soc. Rev., 22(6), 397-407. doi:10.1039/cs9932200397

Zhou, Z.-B., Matsumoto, H., & Tatsumi, K. (2006). Cyclic Quaternary Ammonium Ionic Liquids with Perfluoroalkyltrifluoroborates: Synthesis, Characterization, and Properties. Chemistry - A European Journal, 12(8), 2196-2212. doi:10.1002/chem.200500930

Hapiot, P., & Lagrost, C. (2008). Electrochemical Reactivity in Room-Temperature Ionic Liquids. Chemical Reviews, 108(7), 2238-2264. doi:10.1021/cr0680686

Xiao, L., & Johnson, K. E. (2003). Electrochemistry of 1-Butyl-3-methyl-1H-imidazolium Tetrafluoroborate Ionic Liquid. Journal of The Electrochemical Society, 150(6), E307. doi:10.1149/1.1568740

Zheng, J. P., Pettit, C. M., Goonetilleke, P. C., Zenger, G. M., & Roy, D. (2009). D.C. voltammetry of ionic liquid-based capacitors: Effects of Faradaic reactions, electrolyte resistance and voltage scan speed investigated using an electrode of carbon nanotubes in EMIM-EtSO4. Talanta, 78(3), 1056-1062. doi:10.1016/j.talanta.2009.01.014

MacFarlane, D. R., Pringle, J. M., Howlett, P. C., & Forsyth, M. (2010). Ionic liquids and reactions at the electrochemical interface. Physical Chemistry Chemical Physics, 12(8), 1659. doi:10.1039/b923053j

Howlett, P. C., Izgorodina, E. I., Forsyth, M., & MacFarlane, D. R. (2006). Electrochemistry at Negative Potentials in Bis(trifluoromethanesulfonyl)amide Ionic Liquids. Zeitschrift für Physikalische Chemie, 220(10), 1483-1498. doi:10.1524/zpch.2006.220.10.1483

Carmichael, A. J., Earle, M. J., Holbrey, J. D., McCormac, P. B., & Seddon, K. R. (1999). The Heck Reaction in Ionic Liquids:  A Multiphasic Catalyst System. Organic Letters, 1(7), 997-1000. doi:10.1021/ol9907771

Forsyth, S. A., Gunaratne, H. Q. N., Hardacre, C., McKeown, A., Rooney, D. W., & Seddon, K. R. (2005). Utilisation of ionic liquid solvents for the synthesis of Lily-of-the-Valley fragrance {β-Lilial®; 3-(4-t-butylphenyl)-2-methylpropanal}. Journal of Molecular Catalysis A: Chemical, 231(1-2), 61-66. doi:10.1016/j.molcata.2004.12.022

Forsyth, S. A., MacFarlane, D. R., Thomson, R. J., & von Itzstein, M. (2002). Rapid, clean, and mild O-acetylation of alcohols and carbohydrates in an ionic liquid. Chemical Communications, (7), 714-715. doi:10.1039/b200306f

[-]

This item appears in the following Collection(s)

Show full item record