- -

New ionic liquids from azepane and 3-methylpiperidine exhibiting wide electrochemical windows

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New ionic liquids from azepane and 3-methylpiperidine exhibiting wide electrochemical windows

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Belhocine, Tayeb es_ES
dc.contributor.author Forsyth, Stewart A. es_ES
dc.contributor.author Gunaratne, H. Q. Nimal es_ES
dc.contributor.author Nieuwenhuyzen, Mark es_ES
dc.contributor.author Vaca Puga, Alberto es_ES
dc.contributor.author Seddon, Kenneth R. es_ES
dc.contributor.author Srinivasan, Geetha es_ES
dc.contributor.author Whiston, Keith es_ES
dc.date.accessioned 2013-09-02T07:08:49Z
dc.date.issued 2011
dc.identifier.issn 1463-9262
dc.identifier.uri http://hdl.handle.net/10251/31667
dc.description.abstract New ionic liquids based on azepanium and 3-methylpiperidinium cations have been synthesised; they exhibit moderate viscosities and remarkably wide electrochemical windows, thereby showing promise, inter alia, as electrolytes and battery materials, and as synthetic media. es_ES
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Green Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.title New ionic liquids from azepane and 3-methylpiperidine exhibiting wide electrochemical windows es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1039/c0gc00534g
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Belhocine, T.; Forsyth, SA.; Gunaratne, HQN.; Nieuwenhuyzen, M.; Vaca Puga, A.; Seddon, KR.; Srinivasan, G.... (2011). New ionic liquids from azepane and 3-methylpiperidine exhibiting wide electrochemical windows. Green Chemistry. 13(1):59-63. doi:10.1039/c0gc00534g es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c0gc00534g es_ES
dc.description.upvformatpinicio 59 es_ES
dc.description.upvformatpfin 63 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 210235
dc.description.references Wilkes, J. S., Levisky, J. A., Wilson, R. A., & Hussey, C. L. (1982). Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorganic Chemistry, 21(3), 1263-1264. doi:10.1021/ic00133a078 es_ES
dc.description.references Wilkes, J. S. (2002). A short history of ionic liquids—from molten salts to neoteric solvents. Green Chemistry, 4(2), 73-80. doi:10.1039/b110838g es_ES
dc.description.references Hurley, F. H., & WIer, T. P. (1951). Electrodeposition of Metals from Fused Quaternary Ammonium Salts. Journal of The Electrochemical Society, 98(5), 203. doi:10.1149/1.2778132 es_ES
dc.description.references Hurley, F. H., & WIer, T. P. (1951). The Electrodeposition of Aluminum from Nonaqueous Solutions at Room Temperature. Journal of The Electrochemical Society, 98(5), 207. doi:10.1149/1.2778133 es_ES
dc.description.references H. Ohno (ed.), ‘Ionic Liquids: The Front and Future of Material Development’, CMC Press, Tokyo, 2003 es_ES
dc.description.references H. Ohno (ed.), ‘Electrochemical Aspects of Ionic Liquids’, Wiley-Interscience, Hoboken, 2005 es_ES
dc.description.references Galiński, M., Lewandowski, A., & Stępniak, I. (2006). Ionic liquids as electrolytes. Electrochimica Acta, 51(26), 5567-5580. doi:10.1016/j.electacta.2006.03.016 es_ES
dc.description.references Armand, M., Endres, F., MacFarlane, D. R., Ohno, H., & Scrosati, B. (2009). Ionic-liquid materials for the electrochemical challenges of the future. Nature Materials, 8(8), 621-629. doi:10.1038/nmat2448 es_ES
dc.description.references MacFarlane, D. R., Huang, J., & Forsyth, M. (1999). Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries. Nature, 402(6763), 792-794. doi:10.1038/45514 es_ES
dc.description.references Buzzeo, M. C., Evans, R. G., & Compton, R. G. (2004). Non-Haloaluminate Room-Temperature Ionic Liquids in Electrochemistry—A Review. ChemPhysChem, 5(8), 1106-1120. doi:10.1002/cphc.200301017 es_ES
dc.description.references F. Endres, D. MacFarlane and A. Abbott (ed.), ‘Electrodeposition from Ionic Liquids’, Wiley-VCH, Weinheim, 2008 es_ES
dc.description.references D. Teramoto , R.Yokoyama, H.Kagawa, T.Sada and N.Ogata, in ‘Molten salts and ionic liquids: never the Twain?’ ed. M. Gaune-Escard and K. R. Seddon, John Wiley & Sons, Inc., Hoboken, 2010 es_ES
dc.description.references Bonhôte, P., Dias, A.-P., Papageorgiou, N., Kalyanasundaram, K., & Grätzel, M. (1996). Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts†. Inorganic Chemistry, 35(5), 1168-1178. doi:10.1021/ic951325x es_ES
dc.description.references Buzzeo, M. C., Hardacre, C., & Compton, R. G. (2006). Extended Electrochemical Windows Made Accessible by Room Temperature Ionic Liquid/Organic Solvent Electrolyte Systems. ChemPhysChem, 7(1), 176-180. doi:10.1002/cphc.200500361 es_ES
dc.description.references MacFarlane, D. R., Meakin, P., Sun, J., Amini, N., & Forsyth, M. (1999). Pyrrolidinium Imides:  A New Family of Molten Salts and Conductive Plastic Crystal Phases. The Journal of Physical Chemistry B, 103(20), 4164-4170. doi:10.1021/jp984145s es_ES
dc.description.references Sun, J., Forsyth, M., & MacFarlane, D. R. (1998). Room-Temperature Molten Salts Based on the Quaternary Ammonium Ion. The Journal of Physical Chemistry B, 102(44), 8858-8864. doi:10.1021/jp981159p es_ES
dc.description.references Sakaebe, H., & Matsumoto, H. (2003). N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13–TFSI) – novel electrolyte base for Li battery. Electrochemistry Communications, 5(7), 594-598. doi:10.1016/s1388-2481(03)00137-1 es_ES
dc.description.references Alunni, S., & Tijskens, P. (1995). Study on the Effect of the Structure of the Leaving Group in the E1cb Mechanism of Base-Promoted .beta.-Elimination Reactions from N-[2-(p-Nitrophenyl)ethyl]alkylammonium Ions. The Journal of Organic Chemistry, 60(26), 8371-8374. doi:10.1021/jo00131a011 es_ES
dc.description.references Van den Berg, J.-A., & Seddon, K. R. (2003). Critical Evaluation of C−H···X Hydrogen Bonding in the Crystalline State. Crystal Growth & Design, 3(5), 643-661. doi:10.1021/cg034083h es_ES
dc.description.references Bondi, A. (1964). van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68(3), 441-451. doi:10.1021/j100785a001 es_ES
dc.description.references G. R. Desiraju , ‘Crystal Engineering. The Design of Organic Solids’, Elsevier, Amsterdam, 1989 es_ES
dc.description.references Aakeröy, C. B., & Seddon, K. R. (1993). The hydrogen bond and crystal engineering. Chem. Soc. Rev., 22(6), 397-407. doi:10.1039/cs9932200397 es_ES
dc.description.references Zhou, Z.-B., Matsumoto, H., & Tatsumi, K. (2006). Cyclic Quaternary Ammonium Ionic Liquids with Perfluoroalkyltrifluoroborates: Synthesis, Characterization, and Properties. Chemistry - A European Journal, 12(8), 2196-2212. doi:10.1002/chem.200500930 es_ES
dc.description.references Hapiot, P., & Lagrost, C. (2008). Electrochemical Reactivity in Room-Temperature Ionic Liquids. Chemical Reviews, 108(7), 2238-2264. doi:10.1021/cr0680686 es_ES
dc.description.references Xiao, L., & Johnson, K. E. (2003). Electrochemistry of 1-Butyl-3-methyl-1H-imidazolium Tetrafluoroborate Ionic Liquid. Journal of The Electrochemical Society, 150(6), E307. doi:10.1149/1.1568740 es_ES
dc.description.references Zheng, J. P., Pettit, C. M., Goonetilleke, P. C., Zenger, G. M., & Roy, D. (2009). D.C. voltammetry of ionic liquid-based capacitors: Effects of Faradaic reactions, electrolyte resistance and voltage scan speed investigated using an electrode of carbon nanotubes in EMIM-EtSO4. Talanta, 78(3), 1056-1062. doi:10.1016/j.talanta.2009.01.014 es_ES
dc.description.references MacFarlane, D. R., Pringle, J. M., Howlett, P. C., & Forsyth, M. (2010). Ionic liquids and reactions at the electrochemical interface. Physical Chemistry Chemical Physics, 12(8), 1659. doi:10.1039/b923053j es_ES
dc.description.references Howlett, P. C., Izgorodina, E. I., Forsyth, M., & MacFarlane, D. R. (2006). Electrochemistry at Negative Potentials in Bis(trifluoromethanesulfonyl)amide Ionic Liquids. Zeitschrift für Physikalische Chemie, 220(10), 1483-1498. doi:10.1524/zpch.2006.220.10.1483 es_ES
dc.description.references Carmichael, A. J., Earle, M. J., Holbrey, J. D., McCormac, P. B., & Seddon, K. R. (1999). The Heck Reaction in Ionic Liquids:  A Multiphasic Catalyst System. Organic Letters, 1(7), 997-1000. doi:10.1021/ol9907771 es_ES
dc.description.references Forsyth, S. A., Gunaratne, H. Q. N., Hardacre, C., McKeown, A., Rooney, D. W., & Seddon, K. R. (2005). Utilisation of ionic liquid solvents for the synthesis of Lily-of-the-Valley fragrance {β-Lilial®; 3-(4-t-butylphenyl)-2-methylpropanal}. Journal of Molecular Catalysis A: Chemical, 231(1-2), 61-66. doi:10.1016/j.molcata.2004.12.022 es_ES
dc.description.references Forsyth, S. A., MacFarlane, D. R., Thomson, R. J., & von Itzstein, M. (2002). Rapid, clean, and mild O-acetylation of alcohols and carbohydrates in an ionic liquid. Chemical Communications, (7), 714-715. doi:10.1039/b200306f es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem