- -

The Blade-On-Petiole genes of Arabidopsis are essential for resistance induced by methyl jasmonate

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Blade-On-Petiole genes of Arabidopsis are essential for resistance induced by methyl jasmonate

Mostrar el registro completo del ítem

Dobón Alonso, A.; Fajmonova, J.; Tornero Feliciano, P.; Canet, JV. (2012). The Blade-On-Petiole genes of Arabidopsis are essential for resistance induced by methyl jasmonate. BMC Plant Biology. 199:1-1. https://doi.org/10.1186/1471-2229-12-199

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/31751

Ficheros en el ítem

Metadatos del ítem

Título: The Blade-On-Petiole genes of Arabidopsis are essential for resistance induced by methyl jasmonate
Autor: Dobón Alonso, Albor Fajmonova, J Tornero Feliciano, Pablo Canet, Juan Vicente
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
Background: NPR1 is a gene of Arabidopsis thaliana required for the perception of salicylic acid. This perception triggers a defense response and negatively regulates the perception of jasmonates. Surprisingly, the application ...[+]
Palabras clave: Arabidopsis , BOPs , Defense , Methyl jasmonate , NPR1 , Salicylic acid
Derechos de uso: Reconocimiento (by)
Fuente:
BMC Plant Biology. (issn: 1471-2229 )
DOI: 10.1186/1471-2229-12-199
Editorial:
BioMed Central
Versión del editor: http://dx.doi.org/10.1186/1471-2229-12-199
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//BIO2010-18896/ES/RESPUESTA AL ACIDO SALICILICO EN ARABIDOPSIS THALIANA/
Ministerio de Economia y Competitividad" (MINECO) of Spain (JAE-CSIC Fellowship)
Ministerio de Economia y Competitividad" (MINECO) of Spain (FPI-MINECO)
Agradecimientos:
This work was supported by the "Ministerio de Economia y Competitividad" (MINECO) of Spain (grant BIO201018896 to PT, a JAE-CSIC Fellowship to JVC and a FPI-MINECO to AD) and "Generalitat Valenciana" of Spain (grant ...[+]
Tipo: Artículo

References

Ross, A. F. (1961). Systemic acquired resistance induced by localized virus infections in plants. Virology, 14(3), 340-358. doi:10.1016/0042-6822(61)90319-1

López, M. A., Bannenberg, G., & Castresana, C. (2008). Controlling hormone signaling is a plant and pathogen challenge for growth and survival. Current Opinion in Plant Biology, 11(4), 420-427. doi:10.1016/j.pbi.2008.05.002

Browse, J. (2009). Jasmonate Passes Muster: A Receptor and Targets for the Defense Hormone. Annual Review of Plant Biology, 60(1), 183-205. doi:10.1146/annurev.arplant.043008.092007 [+]
Ross, A. F. (1961). Systemic acquired resistance induced by localized virus infections in plants. Virology, 14(3), 340-358. doi:10.1016/0042-6822(61)90319-1

López, M. A., Bannenberg, G., & Castresana, C. (2008). Controlling hormone signaling is a plant and pathogen challenge for growth and survival. Current Opinion in Plant Biology, 11(4), 420-427. doi:10.1016/j.pbi.2008.05.002

Browse, J. (2009). Jasmonate Passes Muster: A Receptor and Targets for the Defense Hormone. Annual Review of Plant Biology, 60(1), 183-205. doi:10.1146/annurev.arplant.043008.092007

Dong, X. (2004). NPR1, all things considered. Current Opinion in Plant Biology, 7(5), 547-552. doi:10.1016/j.pbi.2004.07.005

Zhang, Y., Cheng, Y. T., Qu, N., Zhao, Q., Bi, D., & Li, X. (2006). Negative regulation of defense responses in Arabidopsis by twoNPR1paralogs. The Plant Journal, 48(5), 647-656. doi:10.1111/j.1365-313x.2006.02903.x

Ha, C. M. (2003). The BLADE-ON-PETIOLE 1 gene controls leaf pattern formation through the modulation of meristematic activity in Arabidopsis. Development, 130(1), 161-172. doi:10.1242/dev.00196

CANET, J. V., DOBÓN, A., ROIG, A., & TORNERO, P. (2010). Structure-function analysis of npr1 alleles in Arabidopsis reveals a role for its paralogs in the perception of salicylic acid. Plant, Cell & Environment, 33(11), 1911-1922. doi:10.1111/j.1365-3040.2010.02194.x

Zhang, Y., Fan, W., Kinkema, M., Li, X., & Dong, X. (1999). Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proceedings of the National Academy of Sciences, 96(11), 6523-6528. doi:10.1073/pnas.96.11.6523

Ton, J., De Vos, M., Robben, C., Buchala, A., Métraux, J.-P., Van Loon, L. C., & Pieterse, C. M. J. (2002). Characterization ofArabidopsisenhanced disease susceptibility mutants that are affected in systemically induced resistance. The Plant Journal, 29(1), 11-21. doi:10.1046/j.1365-313x.2002.01190.x

Spoel, S. H., Koornneef, A., Claessens, S. M. C., Korzelius, J. P., Van Pelt, J. A., Mueller, M. J., … Pieterse, C. M. J. (2003). NPR1 Modulates Cross-Talk between Salicylate- and Jasmonate-Dependent Defense Pathways through a Novel Function in the Cytosol. The Plant Cell, 15(3), 760-770. doi:10.1105/tpc.009159

Glazebrook, J., Chen, W., Estes, B., Chang, H.-S., Nawrath, C., Metraux, J.-P., … Katagiri, F. (2003). Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. The Plant Journal, 34(2), 217-228. doi:10.1046/j.1365-313x.2003.01717.x

Johansson, A., Staal, J., & Dixelius, C. (2006). Early Responses in theArabidopsis-Verticillium longisporumPathosystem Are Dependent onNDR1, JA- and ET-Associated Signals via Cytosolic NPR1 andRFO1. Molecular Plant-Microbe Interactions, 19(9), 958-969. doi:10.1094/mpmi-19-0958

Leon-Reyes, A., Spoel, S. H., De Lange, E. S., Abe, H., Kobayashi, M., Tsuda, S., … Pieterse, C. M. J. (2009). Ethylene Modulates the Role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 in Cross Talk between Salicylate and Jasmonate Signaling. Plant Physiology, 149(4), 1797-1809. doi:10.1104/pp.108.133926

Ramírez, V., Van der Ent, S., García-Andrade, J., Coego, A., Pieterse, C. M., & Vera, P. (2010). OCP3 is an important modulator of NPR1-mediated jasmonic acid-dependent induced defenses in Arabidopsis. BMC Plant Biology, 10(1), 199. doi:10.1186/1471-2229-10-199

Hepworth, S. R., Zhang, Y., McKim, S., Li, X., & Haughn, G. W. (2005). BLADE-ON-PETIOLE–Dependent Signaling Controls Leaf and Floral Patterning in Arabidopsis. The Plant Cell, 17(5), 1434-1448. doi:10.1105/tpc.104.030536

Ha, C. M., Jun, J. H., Nam, H. G., & Fletcher, J. C. (2004). BLADE-ON-PETIOLE1 Encodes a BTB/POZ Domain Protein Required for Leaf Morphogenesis in Arabidopsis thaliana. Plant and Cell Physiology, 45(10), 1361-1370. doi:10.1093/pcp/pch201

Dobón, A., Canet, J. V., Perales, L., & Tornero, P. (2011). Quantitative genetic analysis of salicylic acid perception in Arabidopsis. Planta, 234(4), 671-684. doi:10.1007/s00425-011-1436-6

Zhang, X., Chen, S., & Mou, Z. (2010). Nuclear localization of NPR1 is required for regulation of salicylate tolerance, isochorismate synthase 1 expression and salicylate accumulation in Arabidopsis. Journal of Plant Physiology, 167(2), 144-148. doi:10.1016/j.jplph.2009.08.002

Cao, H., Glazebrook, J., Clarke, J. D., Volko, S., & Dong, X. (1997). The Arabidopsis NPR1 Gene That Controls Systemic Acquired Resistance Encodes a Novel Protein Containing Ankyrin Repeats. Cell, 88(1), 57-63. doi:10.1016/s0092-8674(00)81858-9

Lawton, K. (1995). Systemic Acquired Resistance inArabidopsisRequires Salicylic Acid but Not Ethylene. Molecular Plant-Microbe Interactions, 8(6), 863. doi:10.1094/mpmi-8-0863

Nawrath, C., Heck, S., Parinthawong, N., & Métraux, J.-P. (2002). EDS5, an Essential Component of Salicylic Acid–Dependent Signaling for Disease Resistance in Arabidopsis, Is a Member of the MATE Transporter Family. The Plant Cell, 14(1), 275-286. doi:10.1105/tpc.010376

Wildermuth, M. C., Dewdney, J., Wu, G., & Ausubel, F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414(6863), 562-565. doi:10.1038/35107108

Schwab, R., Ossowski, S., Riester, M., Warthmann, N., & Weigel, D. (2006). Highly Specific Gene Silencing by Artificial MicroRNAs in Arabidopsis. The Plant Cell, 18(5), 1121-1133. doi:10.1105/tpc.105.039834

Norberg, M. (2005). The BLADE ON PETIOLE genes act redundantly to control the growth and development of lateral organs. Development, 132(9), 2203-2213. doi:10.1242/dev.01815

Xie, D. (1998). COI1: An Arabidopsis Gene Required for Jasmonate-Regulated Defense and Fertility. Science, 280(5366), 1091-1094. doi:10.1126/science.280.5366.1091

Dombrecht, B., Xue, G. P., Sprague, S. J., Kirkegaard, J. A., Ross, J. J., Reid, J. B., … Kazan, K. (2007). MYC2 Differentially Modulates Diverse Jasmonate-Dependent Functions in Arabidopsis. The Plant Cell, 19(7), 2225-2245. doi:10.1105/tpc.106.048017

He, Y., Fukushige, H., Hildebrand, D. F., & Gan, S. (2002). Evidence Supporting a Role of Jasmonic Acid in Arabidopsis Leaf Senescence. Plant Physiology, 128(3), 876-884. doi:10.1104/pp.010843

Mittal, S. (1995). Role of the Phytotoxin Coronatine in the Infection ofAmbidopsis thalianabyPseudomonas syringaepv.tomato. Molecular Plant-Microbe Interactions, 8(1), 165. doi:10.1094/mpmi-8-0165

Ton, J., & Mauch-Mani, B. (2004). β-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. The Plant Journal, 38(1), 119-130. doi:10.1111/j.1365-313x.2004.02028.x

Chang, C., Kwok, S., Bleecker, A., & Meyerowitz, E. (1993). Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science, 262(5133), 539-544. doi:10.1126/science.8211181

Jun, J. H., Ha, C. M., & Fletcher, J. C. (2010). BLADE-ON-PETIOLE1 Coordinates Organ Determinacy and Axial Polarity in Arabidopsis by Directly Activating ASYMMETRIC LEAVES2. The Plant Cell, 22(1), 62-76. doi:10.1105/tpc.109.070763

Zhang, Y., Tessaro, M. J., Lassner, M., & Li, X. (2003). Knockout Analysis of Arabidopsis Transcription Factors TGA2, TGA5, and TGA6 Reveals Their Redundant and Essential Roles in Systemic Acquired Resistance. The Plant Cell, 15(11), 2647-2653. doi:10.1105/tpc.014894

Delaney, T. P., Friedrich, L., & Ryals, J. A. (1995). Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proceedings of the National Academy of Sciences, 92(14), 6602-6606. doi:10.1073/pnas.92.14.6602

Ha, C. M., Jun, J. H., Nam, H. G., & Fletcher, J. C. (2007). BLADE-ON-PETIOLE1 and 2 Control Arabidopsis Lateral Organ Fate through Regulation of LOB Domain and Adaxial-Abaxial Polarity Genes. The Plant Cell, 19(6), 1809-1825. doi:10.1105/tpc.107.051938

Xu, M., Hu, T., McKim, S. M., Murmu, J., Haughn, G. W., & Hepworth, S. R. (2010). Arabidopsis BLADE-ON-PETIOLE1 and 2 promote floral meristem fate and determinacy in a previously undefined pathway targeting APETALA1 and AGAMOUS-LIKE24. The Plant Journal, 63(6), 974-989. doi:10.1111/j.1365-313x.2010.04299.x

McKim, S. M., Stenvik, G.-E., Butenko, M. A., Kristiansen, W., Cho, S. K., Hepworth, S. R., … Haughn, G. W. (2008). The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis. Development, 135(8), 1537-1546. doi:10.1242/dev.012807

Ha, C. M., Jun, J. H., & Fletcher, J. C. (2010). Control of Arabidopsis Leaf Morphogenesis Through Regulation of the YABBY and KNOX Families of Transcription Factors. Genetics, 186(1), 197-206. doi:10.1534/genetics.110.118703

Stein, E., Molitor, A., Kogel, K.-H., & Waller, F. (2008). Systemic Resistance in Arabidopsis Conferred by the Mycorrhizal Fungus Piriformospora indica Requires Jasmonic Acid Signaling and the Cytoplasmic Function of NPR1. Plant and Cell Physiology, 49(11), 1747-1751. doi:10.1093/pcp/pcn147

Spoel, S. H., Mou, Z., Tada, Y., Spivey, N. W., Genschik, P., & Dong, X. (2009). Proteasome-Mediated Turnover of the Transcription Coactivator NPR1 Plays Dual Roles in Regulating Plant Immunity. Cell, 137(5), 860-872. doi:10.1016/j.cell.2009.03.038

Jakoby, M., Weisshaar, B., Dröge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T., & Parcy, F. (2002). bZIP transcription factors in Arabidopsis. Trends in Plant Science, 7(3), 106-111. doi:10.1016/s1360-1385(01)02223-3

Alonso, J. M. (2003). Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science, 301(5633), 653-657. doi:10.1126/science.1086391

Curtis, M. D., & Grossniklaus, U. (2003). A Gateway Cloning Vector Set for High-Throughput Functional Analysis of Genes in Planta. Plant Physiology, 133(2), 462-469. doi:10.1104/pp.103.027979

Ciannamea, S., Kaufmann, K., Frau, M., Tonaco, I. A. N., Petersen, K., Nielsen, K. K., … Immink, R. G. H. (2006). Protein interactions of MADS box transcription factors involved in flowering in Lolium perenne. Journal of Experimental Botany, 57(13), 3419-3431. doi:10.1093/jxb/erl144

Vidal, M. (1999). Yeast forward and reverse «n»-hybrid systems. Nucleic Acids Research, 27(4), 919-929. doi:10.1093/nar/27.4.919

Nakagawa, T., Kurose, T., Hino, T., Tanaka, K., Kawamukai, M., Niwa, Y., … Kimura, T. (2007). Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. Journal of Bioscience and Bioengineering, 104(1), 34-41. doi:10.1263/jbb.104.34

Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem