Mostrar el registro sencillo del ítem
dc.contributor.author | Kakol, Jerzy | es_ES |
dc.contributor.author | López Pellicer, Manuel | |
dc.date.accessioned | 2013-09-09T11:56:56Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0004-9727 | |
dc.identifier.uri | http://hdl.handle.net/10251/31895 | |
dc.description.abstract | The paper deals with the following problem: characterize Tichonov spaces X whose realcompactification ¿X is a Lindelöf ¿-space. There are many situations (both in topology and functional analysis) where Lindelöf ¿ (even K-analytic) spaces ¿X appear. For example, if E is a locally convex space in the class fraktur G sign in sense of Cascales and Orihuela (fraktur G sign includes among others (LM)-spaces and (DF)-spaces), then ¿(E¿,¿(E¿,E)) is K-analytic and E is web-bounded. This provides a general fact (due to Cascales-Kakol-Saxon): if E¿fraktur G sign, then ¿(E¿,E) is K-analytic if and only if ¿(E¿,E) is Lindelöf. We prove a corresponding result for spaces Cp(X) of continuous real-valued maps on X endowed with the pointwise topology: ¿X is a Lindelöf ¿-space if and only if X is strongly web-bounding if and only if Cp(X) is web-bounded. Hence the weak* dual of C p(X) is a Lindelöf ¿-space if and only if Cp(X) is web-bounded and has countable tightness. Applications are provided. For example, every E¿fraktur G sign is covered by a family {A¿ :¿¿¿} of bounded sets for some nonempty set ¿¿¿¿. © Copyright Australian Mathematical Publishing Association Inc. 2011. | es_ES |
dc.description.sponsorship | This research is supported by the project of Ministry of Science and Higher Education, Poland, grant no. N 201 2740 33 and project MTM2008-01502 of the Spanish Ministry of Science and Innovation. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Cambridge University Press | es_ES |
dc.relation.ispartof | Bulletin of the Australian Mathematical Society | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Countable tightness | es_ES |
dc.subject | K-analytic | es_ES |
dc.subject | Locally convex spaces | es_ES |
dc.subject | Realcompactification | es_ES |
dc.subject | Spaces of continuous real-valued maps | es_ES |
dc.subject | Web-bounded spaces | es_ES |
dc.subject | Lindelöf Sigma-spaces | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Note about lindelof Sigma-SPACES nu X | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1017/S000497271100270X | |
dc.relation.projectID | info:eu-repo/grantAgreement/MNiSW//NN201 2740 33/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2008-01502/ES/ELEMENTOS DE TOPOLOGIA DESCRIPTIVA DE CONJUNTOS EN ANALISIS FUNCIONAL LINEAL/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Kakol, J.; López Pellicer, M. (2012). Note about lindelof Sigma-SPACES nu X. Bulletin of the Australian Mathematical Society. 85(1):114-120. https://doi.org/10.1017/S000497271100270X | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1017/S000497271100270X | es_ES |
dc.description.upvformatpinicio | 114 | es_ES |
dc.description.upvformatpfin | 120 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 85 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 222695 | |
dc.identifier.eissn | 1755-1633 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministry of Science and Higher Education, Polonia | es_ES |
dc.description.references | FERRANDO, J. C., & KĄKOL, J. (2008). A NOTE ON SPACES Cp(X)K-ANALYTIC-FRAMED IN ℝX. Bulletin of the Australian Mathematical Society, 78(1), 141-146. doi:10.1017/s0004972708000567 | es_ES |
dc.description.references | Orihuela, J. (1987). Pointwise Compactness in Spaces of Continuous Functions. Journal of the London Mathematical Society, s2-36(1), 143-152. doi:10.1112/jlms/s2-36.1.143 | es_ES |
dc.description.references | Okunev, O. G. (1993). On Lindelöf Σ-spaces of continuous functions in the pointwise topology. Topology and its Applications, 49(2), 149-166. doi:10.1016/0166-8641(93)90041-b | es_ES |
dc.description.references | Cascales, B., & Orihuela, J. (1987). On compactness in locally convex spaces. Mathematische Zeitschrift, 195(3), 365-381. doi:10.1007/bf01161762 | es_ES |
dc.description.references | Arkhangel’skii, A. V. (1992). Topological Function Spaces. Mathematics and Its Applications. doi:10.1007/978-94-011-2598-7 | es_ES |
dc.description.references | Cascales, B. (1987). OnK-analytic locally convex spaces. Archiv der Mathematik, 49(3), 232-244. doi:10.1007/bf01271663 | es_ES |
dc.description.references | Nagami, K. (1969). Σ-spaces. Fundamenta Mathematicae, 65(2), 169-192. doi:10.4064/fm-65-2-169-192 | es_ES |
dc.description.references | Cascales, B., Ka̧kol, J., & Saxon, S. A. (2002). Weight of precompact subsets and tightness. Journal of Mathematical Analysis and Applications, 269(2), 500-518. doi:10.1016/s0022-247x(02)00032-x | es_ES |
dc.description.references | Ferrando, J. C. (2009). Some characterizations for υX to be Lindelöf Σ or K-analytic in terms of <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msub><mml:mi>C</mml:mi><mml:mi>p</mml:mi></mml:msub><mml:mo stretchy=«false»>(</mml:mo><mml:mi>X</mml:mi><mml:mo stretchy=«false»>)</mml:mo></mml:math>. Topology and its Applications, 156(4), 823-830. doi:10.1016/j.topol.2008.10.016 | es_ES |
dc.description.references | Ferrando, J. C., Ka̧kol, J., López Pellicer, M., & Saxon, S. A. (2008). Quasi-Suslin weak duals. Journal of Mathematical Analysis and Applications, 339(2), 1253-1263. doi:10.1016/j.jmaa.2007.07.081 | es_ES |
dc.description.references | Cascales, B., Kąkol, J., & Saxon, S. A. (2003). Proceedings of the American Mathematical Society, 131(11), 3623-3632. doi:10.1090/s0002-9939-03-06944-2 | es_ES |
dc.description.references | Ka̧kol, J., & López Pellicer, M. (2007). Compact coverings for Baire locally convex spaces. Journal of Mathematical Analysis and Applications, 332(2), 965-974. doi:10.1016/j.jmaa.2006.10.045 | es_ES |
dc.description.references | Valdivia, M. (1987). Quasi-LB-Spaces. Journal of the London Mathematical Society, s2-35(1), 149-168. doi:10.1112/jlms/s2-35.1.149 | es_ES |