- -

Note about lindelof Sigma-SPACES nu X

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Note about lindelof Sigma-SPACES nu X

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kakol, Jerzy es_ES
dc.contributor.author López Pellicer, Manuel
dc.date.accessioned 2013-09-09T11:56:56Z
dc.date.issued 2012
dc.identifier.issn 0004-9727
dc.identifier.uri http://hdl.handle.net/10251/31895
dc.description.abstract The paper deals with the following problem: characterize Tichonov spaces X whose realcompactification ¿X is a Lindelöf ¿-space. There are many situations (both in topology and functional analysis) where Lindelöf ¿ (even K-analytic) spaces ¿X appear. For example, if E is a locally convex space in the class fraktur G sign in sense of Cascales and Orihuela (fraktur G sign includes among others (LM)-spaces and (DF)-spaces), then ¿(E¿,¿(E¿,E)) is K-analytic and E is web-bounded. This provides a general fact (due to Cascales-Kakol-Saxon): if E¿fraktur G sign, then ¿(E¿,E) is K-analytic if and only if ¿(E¿,E) is Lindelöf. We prove a corresponding result for spaces Cp(X) of continuous real-valued maps on X endowed with the pointwise topology: ¿X is a Lindelöf ¿-space if and only if X is strongly web-bounding if and only if Cp(X) is web-bounded. Hence the weak* dual of C p(X) is a Lindelöf ¿-space if and only if Cp(X) is web-bounded and has countable tightness. Applications are provided. For example, every E¿fraktur G sign is covered by a family {A¿ :¿¿¿} of bounded sets for some nonempty set ¿¿¿¿. © Copyright Australian Mathematical Publishing Association Inc. 2011. es_ES
dc.description.sponsorship This research is supported by the project of Ministry of Science and Higher Education, Poland, grant no. N 201 2740 33 and project MTM2008-01502 of the Spanish Ministry of Science and Innovation. en_EN
dc.language Inglés es_ES
dc.publisher Cambridge University Press es_ES
dc.relation.ispartof Bulletin of the Australian Mathematical Society es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Countable tightness es_ES
dc.subject K-analytic es_ES
dc.subject Locally convex spaces es_ES
dc.subject Realcompactification es_ES
dc.subject Spaces of continuous real-valued maps es_ES
dc.subject Web-bounded spaces es_ES
dc.subject Lindelöf Sigma-spaces es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Note about lindelof Sigma-SPACES nu X es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1017/S000497271100270X
dc.relation.projectID info:eu-repo/grantAgreement/MNiSW//NN201 2740 33/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2008-01502/ES/ELEMENTOS DE TOPOLOGIA DESCRIPTIVA DE CONJUNTOS EN ANALISIS FUNCIONAL LINEAL/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Kakol, J.; López Pellicer, M. (2012). Note about lindelof Sigma-SPACES nu X. Bulletin of the Australian Mathematical Society. 85(1):114-120. https://doi.org/10.1017/S000497271100270X es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1017/S000497271100270X es_ES
dc.description.upvformatpinicio 114 es_ES
dc.description.upvformatpfin 120 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 85 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 222695
dc.identifier.eissn 1755-1633
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministry of Science and Higher Education, Polonia es_ES
dc.description.references FERRANDO, J. C., & KĄKOL, J. (2008). A NOTE ON SPACES Cp(X)K-ANALYTIC-FRAMED IN ℝX. Bulletin of the Australian Mathematical Society, 78(1), 141-146. doi:10.1017/s0004972708000567 es_ES
dc.description.references Orihuela, J. (1987). Pointwise Compactness in Spaces of Continuous Functions. Journal of the London Mathematical Society, s2-36(1), 143-152. doi:10.1112/jlms/s2-36.1.143 es_ES
dc.description.references Okunev, O. G. (1993). On Lindelöf Σ-spaces of continuous functions in the pointwise topology. Topology and its Applications, 49(2), 149-166. doi:10.1016/0166-8641(93)90041-b es_ES
dc.description.references Cascales, B., & Orihuela, J. (1987). On compactness in locally convex spaces. Mathematische Zeitschrift, 195(3), 365-381. doi:10.1007/bf01161762 es_ES
dc.description.references Arkhangel’skii, A. V. (1992). Topological Function Spaces. Mathematics and Its Applications. doi:10.1007/978-94-011-2598-7 es_ES
dc.description.references Cascales, B. (1987). OnK-analytic locally convex spaces. Archiv der Mathematik, 49(3), 232-244. doi:10.1007/bf01271663 es_ES
dc.description.references Nagami, K. (1969). Σ-spaces. Fundamenta Mathematicae, 65(2), 169-192. doi:10.4064/fm-65-2-169-192 es_ES
dc.description.references Cascales, B., Ka̧kol, J., & Saxon, S. A. (2002). Weight of precompact subsets and tightness. Journal of Mathematical Analysis and Applications, 269(2), 500-518. doi:10.1016/s0022-247x(02)00032-x es_ES
dc.description.references Ferrando, J. C. (2009). Some characterizations for υX to be Lindelöf Σ or K-analytic in terms of <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msub><mml:mi>C</mml:mi><mml:mi>p</mml:mi></mml:msub><mml:mo stretchy=«false»>(</mml:mo><mml:mi>X</mml:mi><mml:mo stretchy=«false»>)</mml:mo></mml:math>. Topology and its Applications, 156(4), 823-830. doi:10.1016/j.topol.2008.10.016 es_ES
dc.description.references Ferrando, J. C., Ka̧kol, J., López Pellicer, M., & Saxon, S. A. (2008). Quasi-Suslin weak duals. Journal of Mathematical Analysis and Applications, 339(2), 1253-1263. doi:10.1016/j.jmaa.2007.07.081 es_ES
dc.description.references Cascales, B., Kąkol, J., & Saxon, S. A. (2003). Proceedings of the American Mathematical Society, 131(11), 3623-3632. doi:10.1090/s0002-9939-03-06944-2 es_ES
dc.description.references Ka̧kol, J., & López Pellicer, M. (2007). Compact coverings for Baire locally convex spaces. Journal of Mathematical Analysis and Applications, 332(2), 965-974. doi:10.1016/j.jmaa.2006.10.045 es_ES
dc.description.references Valdivia, M. (1987). Quasi-LB-Spaces. Journal of the London Mathematical Society, s2-35(1), 149-168. doi:10.1112/jlms/s2-35.1.149 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem