- -

Highly selective and sensitive chromo-fluorogenic detection of the Tetryl explosive using functional silica nanoparticles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Highly selective and sensitive chromo-fluorogenic detection of the Tetryl explosive using functional silica nanoparticles

Mostrar el registro completo del ítem

Salinas Soler, Y.; Climent Terol, E.; Martínez Mañez, R.; Sancenón Galarza, F.; Marcos Martínez, MD.; Soto Camino, J.; Costero, AM.... (2011). Highly selective and sensitive chromo-fluorogenic detection of the Tetryl explosive using functional silica nanoparticles. Chemical Communications. 47:11885-11887. https://doi.org/10.1039/c1cc14877j

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/31945

Ficheros en el ítem

Metadatos del ítem

Título: Highly selective and sensitive chromo-fluorogenic detection of the Tetryl explosive using functional silica nanoparticles
Autor: Salinas Soler, Yolanda Climent Terol, Estela Martínez Mañez, Ramón Sancenón Galarza, Félix Marcos Martínez, María Dolores Soto Camino, Juan Costero, Ana M. Gil Grau, Salvador Parra Álvarez, Margarita Perez de Diego, Alberto
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Fecha difusión:
Resumen:
Silica nanoparticles containing polyamines and thiol groups have been used as probes for the selective detection of Tetryl. © 2011 The Royal Society of Chemistry.
Palabras clave: 2,4,6 trinitrophenylmethylnitramine , Chromogenic substrate , Dye , Explosive , Fluorescent dye , Nanoparticle , Polyamine , Silane derivative , Silicon dioxide , Thiol group , Unclassified drug , Article , Binding site , Chemical analysis , Chemical structure , Colorimetry , Reaction analysis , Sensor , Aniline Compounds , Explosive Agents , Fluorescent Dyes , Nanoparticles , Nitrobenzenes , Polyamines , Sulfhydryl Compounds
Derechos de uso: Cerrado
Fuente:
Chemical Communications. (issn: 1359-7345 ) (eissn: 1364-548X )
DOI: 10.1039/c1cc14877j
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/c1cc14877j
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MAT2009-14564-C04-01/ES/Nanomateriales Hibridos Para El Desarrollo De "Puertas Moleculares" De Aplicacion En Procesos De Reconocimiento Y Terapeutica Y Para La Deteccion De Explosivos./
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/
Agradecimientos:
Financial support from the Spanish Government (project MAT2009-14564-C04-01) and Generalitat Valencia (project PRO-METEO/2009/016) is gratefully acknowledged. Y.S. is grateful to the Spanish Ministry of Science and Innovation ...[+]
Tipo: Artículo

References

Singh, S. (2007). Sensors—An effective approach for the detection of explosives. Journal of Hazardous Materials, 144(1-2), 15-28. doi:10.1016/j.jhazmat.2007.02.018

Schulte-Ladbeck, R., Vogel, M., & Karst, U. (2006). Recent methods for the determination of peroxide-based explosives. Analytical and Bioanalytical Chemistry, 386(3), 559-565. doi:10.1007/s00216-006-0579-y

Smith, R. G., D’Souza, N., & Nicklin, S. (2008). A review of biosensors and biologically-inspired systems for explosives detection. The Analyst, 133(5), 571. doi:10.1039/b717933m [+]
Singh, S. (2007). Sensors—An effective approach for the detection of explosives. Journal of Hazardous Materials, 144(1-2), 15-28. doi:10.1016/j.jhazmat.2007.02.018

Schulte-Ladbeck, R., Vogel, M., & Karst, U. (2006). Recent methods for the determination of peroxide-based explosives. Analytical and Bioanalytical Chemistry, 386(3), 559-565. doi:10.1007/s00216-006-0579-y

Smith, R. G., D’Souza, N., & Nicklin, S. (2008). A review of biosensors and biologically-inspired systems for explosives detection. The Analyst, 133(5), 571. doi:10.1039/b717933m

Moore, D. S. (2004). Instrumentation for trace detection of high explosives. Review of Scientific Instruments, 75(8), 2499-2512. doi:10.1063/1.1771493

H�kansson, K., Coorey, R. V., Zubarev, R. A., Talrose, V. L., & H�kansson, P. (2000). Low-mass ions observed in plasma desorption mass spectrometry of high explosives. Journal of Mass Spectrometry, 35(3), 337-346. doi:10.1002/(sici)1096-9888(200003)35:3<337::aid-jms940>3.0.co;2-7

Forzani, E. S., Lu, D., Leright, M. J., Aguilar, A. D., Tsow, F., Iglesias, R. A., … Tao, N. (2009). A Hybrid Electrochemical−Colorimetric Sensing Platform for Detection of Explosives. Journal of the American Chemical Society, 131(4), 1390-1391. doi:10.1021/ja809104h

Thomas, S. W., Joly, G. D., & Swager, T. M. (2007). Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chemical Reviews, 107(4), 1339-1386. doi:10.1021/cr0501339

Germain, M. E., & Knapp, M. J. (2009). Optical explosives detection: from color changes to fluorescence turn-on. Chemical Society Reviews, 38(9), 2543. doi:10.1039/b809631g

Park, J. S., Le Derf, F., Bejger, C. M., Lynch, V. M., Sessler, J. L., Nielsen, K. A., … Jeppesen, J. O. (2009). Positive Homotropic Allosteric Receptors for Neutral Guests: Annulated Tetrathiafulvalene-Calix[4]pyrroles as Colorimetric Chemosensors for Nitroaromatic Explosives. Chemistry - A European Journal, 16(3), 848-854. doi:10.1002/chem.200902924

Malashikhin, S., & Finney, N. S. (2008). Fluorescent Signaling Based on Sulfoxide Profluorophores: Application to the Visual Detection of the Explosive TATP. Journal of the American Chemical Society, 130(39), 12846-12847. doi:10.1021/ja802989v

Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Amorós, P. (2009). The Determination of Methylmercury in Real Samples Using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification. Angewandte Chemie International Edition, 48(45), 8519-8522. doi:10.1002/anie.200904243

Climent, E., Bernardos, A., Martínez-Máñez, R., Maquieira, A., Marcos, M. D., Pastor-Navarro, N., … Amorós, P. (2009). Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. Journal of the American Chemical Society, 131(39), 14075-14080. doi:10.1021/ja904456d

Sugawara, M., Kojima, K., Sazawa, H., & Umezawa, Y. (1987). Ion-channel sensors. Analytical Chemistry, 59(24), 2842-2846. doi:10.1021/ac00151a004

Climent, E., Calero, P., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., & Soto, J. (2009). Selective Chromofluorogenic Sensing of Heparin by using Functionalised Silica Nanoparticles Containing Binding Sites and a Signalling Reporter. Chemistry - A European Journal, 15(8), 1816-1820. doi:10.1002/chem.200802074

Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 49(40), 7281-7283. doi:10.1002/anie.201001847

Ponnu, A., Edwards, N. Y., & Anslyn, E. V. (2008). Pattern recognition based identification of nitrated explosives. New Journal of Chemistry, 32(5), 848. doi:10.1039/b801589a

Montalti, M., Prodi, L., Zaccheroni, N., & Falini, G. (2002). Solvent-Induced Modulation of Collective Photophysical Processes in Fluorescent Silica Nanoparticles. Journal of the American Chemical Society, 124(45), 13540-13546. doi:10.1021/ja027270x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem