Mostrar el registro sencillo del ítem
dc.contributor.author | Salinas Soler, Yolanda | es_ES |
dc.contributor.author | Climent Terol, Estela | es_ES |
dc.contributor.author | Martínez Mañez, Ramón | es_ES |
dc.contributor.author | Sancenón Galarza, Félix | es_ES |
dc.contributor.author | Marcos Martínez, María Dolores | es_ES |
dc.contributor.author | Soto Camino, Juan | es_ES |
dc.contributor.author | Costero, Ana M. | es_ES |
dc.contributor.author | Gil Grau, Salvador | es_ES |
dc.contributor.author | Parra Álvarez, Margarita | es_ES |
dc.contributor.author | Perez de Diego, Alberto | es_ES |
dc.date.accessioned | 2013-09-10T13:08:48Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 1359-7345 | |
dc.identifier.uri | http://hdl.handle.net/10251/31945 | |
dc.description.abstract | Silica nanoparticles containing polyamines and thiol groups have been used as probes for the selective detection of Tetryl. © 2011 The Royal Society of Chemistry. | es_ES |
dc.description.sponsorship | Financial support from the Spanish Government (project MAT2009-14564-C04-01) and Generalitat Valencia (project PRO-METEO/2009/016) is gratefully acknowledged. Y.S. is grateful to the Spanish Ministry of Science and Innovation for a grant. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Chemical Communications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | 2,4,6 trinitrophenylmethylnitramine | es_ES |
dc.subject | Chromogenic substrate | es_ES |
dc.subject | Dye | es_ES |
dc.subject | Explosive | es_ES |
dc.subject | Fluorescent dye | es_ES |
dc.subject | Nanoparticle | es_ES |
dc.subject | Polyamine | es_ES |
dc.subject | Silane derivative | es_ES |
dc.subject | Silicon dioxide | es_ES |
dc.subject | Thiol group | es_ES |
dc.subject | Unclassified drug | es_ES |
dc.subject | Article | es_ES |
dc.subject | Binding site | es_ES |
dc.subject | Chemical analysis | es_ES |
dc.subject | Chemical structure | es_ES |
dc.subject | Colorimetry | es_ES |
dc.subject | Reaction analysis | es_ES |
dc.subject | Sensor | es_ES |
dc.subject | Aniline Compounds | es_ES |
dc.subject | Explosive Agents | es_ES |
dc.subject | Fluorescent Dyes | es_ES |
dc.subject | Nanoparticles | es_ES |
dc.subject | Nitrobenzenes | es_ES |
dc.subject | Polyamines | es_ES |
dc.subject | Sulfhydryl Compounds | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Highly selective and sensitive chromo-fluorogenic detection of the Tetryl explosive using functional silica nanoparticles | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1039/c1cc14877j | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2009-14564-C04-01/ES/Nanomateriales Hibridos Para El Desarrollo De "Puertas Moleculares" De Aplicacion En Procesos De Reconocimiento Y Terapeutica Y Para La Deteccion De Explosivos./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic | es_ES |
dc.description.bibliographicCitation | Salinas Soler, Y.; Climent Terol, E.; Martínez Mañez, R.; Sancenón Galarza, F.; Marcos Martínez, MD.; Soto Camino, J.; Costero, AM.... (2011). Highly selective and sensitive chromo-fluorogenic detection of the Tetryl explosive using functional silica nanoparticles. Chemical Communications. 47:11885-11887. https://doi.org/10.1039/c1cc14877j | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/c1cc14877j | es_ES |
dc.description.upvformatpinicio | 11885 | es_ES |
dc.description.upvformatpfin | 11887 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 47 | es_ES |
dc.relation.senia | 206713 | |
dc.identifier.eissn | 1364-548X | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Singh, S. (2007). Sensors—An effective approach for the detection of explosives. Journal of Hazardous Materials, 144(1-2), 15-28. doi:10.1016/j.jhazmat.2007.02.018 | es_ES |
dc.description.references | Schulte-Ladbeck, R., Vogel, M., & Karst, U. (2006). Recent methods for the determination of peroxide-based explosives. Analytical and Bioanalytical Chemistry, 386(3), 559-565. doi:10.1007/s00216-006-0579-y | es_ES |
dc.description.references | Smith, R. G., D’Souza, N., & Nicklin, S. (2008). A review of biosensors and biologically-inspired systems for explosives detection. The Analyst, 133(5), 571. doi:10.1039/b717933m | es_ES |
dc.description.references | Moore, D. S. (2004). Instrumentation for trace detection of high explosives. Review of Scientific Instruments, 75(8), 2499-2512. doi:10.1063/1.1771493 | es_ES |
dc.description.references | H�kansson, K., Coorey, R. V., Zubarev, R. A., Talrose, V. L., & H�kansson, P. (2000). Low-mass ions observed in plasma desorption mass spectrometry of high explosives. Journal of Mass Spectrometry, 35(3), 337-346. doi:10.1002/(sici)1096-9888(200003)35:3<337::aid-jms940>3.0.co;2-7 | es_ES |
dc.description.references | Forzani, E. S., Lu, D., Leright, M. J., Aguilar, A. D., Tsow, F., Iglesias, R. A., … Tao, N. (2009). A Hybrid Electrochemical−Colorimetric Sensing Platform for Detection of Explosives. Journal of the American Chemical Society, 131(4), 1390-1391. doi:10.1021/ja809104h | es_ES |
dc.description.references | Thomas, S. W., Joly, G. D., & Swager, T. M. (2007). Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chemical Reviews, 107(4), 1339-1386. doi:10.1021/cr0501339 | es_ES |
dc.description.references | Germain, M. E., & Knapp, M. J. (2009). Optical explosives detection: from color changes to fluorescence turn-on. Chemical Society Reviews, 38(9), 2543. doi:10.1039/b809631g | es_ES |
dc.description.references | Park, J. S., Le Derf, F., Bejger, C. M., Lynch, V. M., Sessler, J. L., Nielsen, K. A., … Jeppesen, J. O. (2009). Positive Homotropic Allosteric Receptors for Neutral Guests: Annulated Tetrathiafulvalene-Calix[4]pyrroles as Colorimetric Chemosensors for Nitroaromatic Explosives. Chemistry - A European Journal, 16(3), 848-854. doi:10.1002/chem.200902924 | es_ES |
dc.description.references | Malashikhin, S., & Finney, N. S. (2008). Fluorescent Signaling Based on Sulfoxide Profluorophores: Application to the Visual Detection of the Explosive TATP. Journal of the American Chemical Society, 130(39), 12846-12847. doi:10.1021/ja802989v | es_ES |
dc.description.references | Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Amorós, P. (2009). The Determination of Methylmercury in Real Samples Using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification. Angewandte Chemie International Edition, 48(45), 8519-8522. doi:10.1002/anie.200904243 | es_ES |
dc.description.references | Climent, E., Bernardos, A., Martínez-Máñez, R., Maquieira, A., Marcos, M. D., Pastor-Navarro, N., … Amorós, P. (2009). Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. Journal of the American Chemical Society, 131(39), 14075-14080. doi:10.1021/ja904456d | es_ES |
dc.description.references | Sugawara, M., Kojima, K., Sazawa, H., & Umezawa, Y. (1987). Ion-channel sensors. Analytical Chemistry, 59(24), 2842-2846. doi:10.1021/ac00151a004 | es_ES |
dc.description.references | Climent, E., Calero, P., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., & Soto, J. (2009). Selective Chromofluorogenic Sensing of Heparin by using Functionalised Silica Nanoparticles Containing Binding Sites and a Signalling Reporter. Chemistry - A European Journal, 15(8), 1816-1820. doi:10.1002/chem.200802074 | es_ES |
dc.description.references | Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 49(40), 7281-7283. doi:10.1002/anie.201001847 | es_ES |
dc.description.references | Ponnu, A., Edwards, N. Y., & Anslyn, E. V. (2008). Pattern recognition based identification of nitrated explosives. New Journal of Chemistry, 32(5), 848. doi:10.1039/b801589a | es_ES |
dc.description.references | Montalti, M., Prodi, L., Zaccheroni, N., & Falini, G. (2002). Solvent-Induced Modulation of Collective Photophysical Processes in Fluorescent Silica Nanoparticles. Journal of the American Chemical Society, 124(45), 13540-13546. doi:10.1021/ja027270x | es_ES |