- -

Zariski topology on the spectrum of graded classical prime submodules

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Zariski topology on the spectrum of graded classical prime submodules

Show full item record

Yousefian Darani, A.; Motmaen, S. (2013). Zariski topology on the spectrum of graded classical prime submodules. Applied General Topology. 14(2):159-169. doi:10.4995/agt.2013.1586.

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/32889

Files in this item

Item Metadata

Title: Zariski topology on the spectrum of graded classical prime submodules
Author: Yousefian Darani, Ahmad Motmaen, Shahram
Issued date:
Abstract:
[EN] Let R be a G-graded commutative ring with identity and let M be a graded R-module. A proper graded submodule N of M is called graded classical prime if for every a, b ¿ h(R), m ¿ h(M), whenever abm ¿ N, then either ...[+]
Subjects: Graded prime ideal , Zariski topology , quasi-Zariski topology
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2013.1586
Publisher:
Editorial Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2013.1586
Type: Artículo

References

S. Ebrahimi Atani and F. Farzalipour, On weakly prime submodules, Tamkang Journal of Mathematics 38, no. 3 (2007), 247-252.

S. Ebrahimi Atani and F. Farzalipour, On graded multiplication modules, Chiang-Mai Journal of Science, to appear.

S. Ebrahimi Atani and F.E.K. Saraei, Graded modules which satisfy the Gr-Radical formola, Thai Journal of Mathematics 8, no. 1 (2010), 161-170. [+]
S. Ebrahimi Atani and F. Farzalipour, On weakly prime submodules, Tamkang Journal of Mathematics 38, no. 3 (2007), 247-252.

S. Ebrahimi Atani and F. Farzalipour, On graded multiplication modules, Chiang-Mai Journal of Science, to appear.

S. Ebrahimi Atani and F.E.K. Saraei, Graded modules which satisfy the Gr-Radical formola, Thai Journal of Mathematics 8, no. 1 (2010), 161-170.

P. Lu, The Zariski topology on the prime spectrum of a module, Houston J. Math. 25, no. 3 (1999), 417-425.

McCasland, R. L., Moore, M. E., & Smith, P. F. (1997). On the spectrum of a module over a commutative ring. Communications in Algebra, 25(1), 79-103. doi:10.1080/00927879708825840

K. H. Oral, U. Tekir and A.G. Agargun, On graded prime and primary submodules, Turk. J. Math. 25, no. 3 (1999), 417-425.

Roberts, P. C. (1998). Multiplicities and Chern Classes in Local Algebra. doi:10.1017/cbo9780511529986

Sharp, R. Y. (1986). Asymptotic Behaviour of Certain Sets of Attached Prime Ideals. Journal of the London Mathematical Society, s2-34(2), 212-218. doi:10.1112/jlms/s2-34.2.212

BAZIAR, M., & BEHBOODI, M. (2009). CLASSICAL PRIMARY SUBMODULES AND DECOMPOSITION THEORY OF MODULES. Journal of Algebra and Its Applications, 08(03), 351-362. doi:10.1142/s0219498809003369

M. Behboodi and H. Koohi, Weakly prime modules, Vietnam J. Math. 32, no. 2 (2004), 185–195.

M. Behboodi and M. J. Noori, Zariski-Like topology on the classical prime spectrum of a module, Bull. Iranian Math. Soc. 35, no. 1 (2009), 255–271.

M. Behboodi and S. H. Shojaee, On chains of classical prime submodules and dimension theory of modules, Bulletin of the Iranian Mathematical Society 36 (2010), 149–166.

J. Dauns, Prime modules, J. Reine Angew. Math. 298 (1978), 156–181.

S. Ebrahimi Atani, On graded prime submodules, Chiang Mai J. Sci. 33, no. 1 (2006), 3–7.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record