- -

Zariski topology on the spectrum of graded classical prime submodules

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Zariski topology on the spectrum of graded classical prime submodules

Show simple item record

Files in this item

dc.contributor.author Yousefian Darani, Ahmad es_ES
dc.contributor.author Motmaen, Shahram es_ES
dc.date.accessioned 2013-10-16T10:15:37Z
dc.date.available 2013-10-16T10:15:37Z
dc.date.issued 2013-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/32889
dc.description.abstract [EN] Let R be a G-graded commutative ring with identity and let M be a graded R-module. A proper graded submodule N of M is called graded classical prime if for every a, b ¿ h(R), m ¿ h(M), whenever abm ¿ N, then either am ¿ N or bm ¿ N. The spectrum of graded classical prime submodules of M is denoted by Cl.Specg(M). We topologize Cl.Specg (M) with the quasi-Zariski topology, which is analogous to that for Specg(R). es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Graded prime ideal es_ES
dc.subject Zariski topology es_ES
dc.subject quasi-Zariski topology es_ES
dc.title Zariski topology on the spectrum of graded classical prime submodules es_ES
dc.type Artículo es_ES
dc.date.updated 2013-10-16T07:01:28Z
dc.identifier.doi 10.4995/agt.2013.1586
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Yousefian Darani, A.; Motmaen, S. (2013). Zariski topology on the spectrum of graded classical prime submodules. Applied General Topology. 14(2):159-169. doi:10.4995/agt.2013.1586. es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2013.1586 es_ES
dc.description.upvformatpinicio 159 es_ES
dc.description.upvformatpfin 169 es_ES
dc.description.volume 14
dc.description.issue 2
dc.identifier.eissn 1989-4147


This item appears in the following Collection(s)

Show simple item record