Martins, M. A. P., Frizzo, C. P., Moreira, D. N., Zanatta, N., & Bonacorso, H. G. (2008). Ionic Liquids in Heterocyclic Synthesis. Chemical Reviews, 108(6), 2015-2050. doi:10.1021/cr078399y
Singh, R., Sharma, M., Mamgain, R., & Rawat, D. S. (2008). Ionic liquids: a versatile medium for palladium-catalyzed reactions. Journal of the Brazilian Chemical Society, 19(3), 357-379. doi:10.1590/s0103-50532008000300002
Domínguez de María, P. (2008). «Nonsolvens»-Anwendungen von ionischen Flüssigkeiten bei Biotransformationen und in der Organokatalyse. Angewandte Chemie, 120(37), 7066-7075. doi:10.1002/ange.200703305
[+]
Martins, M. A. P., Frizzo, C. P., Moreira, D. N., Zanatta, N., & Bonacorso, H. G. (2008). Ionic Liquids in Heterocyclic Synthesis. Chemical Reviews, 108(6), 2015-2050. doi:10.1021/cr078399y
Singh, R., Sharma, M., Mamgain, R., & Rawat, D. S. (2008). Ionic liquids: a versatile medium for palladium-catalyzed reactions. Journal of the Brazilian Chemical Society, 19(3), 357-379. doi:10.1590/s0103-50532008000300002
Domínguez de María, P. (2008). «Nonsolvens»-Anwendungen von ionischen Flüssigkeiten bei Biotransformationen und in der Organokatalyse. Angewandte Chemie, 120(37), 7066-7075. doi:10.1002/ange.200703305
Domínguez de María, P. (2008). «Nonsolvent» Applications of Ionic Liquids in Biotransformations and Organocatalysis. Angewandte Chemie International Edition, 47(37), 6960-6968. doi:10.1002/anie.200703305
Welton, T. (2004). Ionic liquids in catalysis. Coordination Chemistry Reviews, 248(21-24), 2459-2477. doi:10.1016/j.ccr.2004.04.015
Rogers, R. D. (2003). CHEMISTRY: Ionic Liquids--Solvents of the Future? Science, 302(5646), 792-793. doi:10.1126/science.1090313
Jastorff, B., Störmann, R., Ranke, J., Mölter, K., Stock, F., Oberheitmann, B., … Filser, J. (2003). How hazardous are ionic liquids? Structure–activity relationships and biological testing as important elements for sustainability evaluationThis work was presented at the Green Solvents for Catalysis Meeting held in Bruchsal, Germany, 13–16th October 2002. Green Chemistry, 5(2), 136-142. doi:10.1039/b211971d
ZHENG, Q., TAN, Z., WANG, D., HAO, A., LIU, B., LÜ, X., & SHI, Q. (2009). Calorimetric Study and Thermal Analysis of 4-(Aminomethyl) Benzoic Acid. Chinese Journal of Chemistry, 27(4), 672-676. doi:10.1002/cjoc.200990110
Stolte, S., Abdulkarim, S., Arning, J., Blomeyer-Nienstedt, A.-K., Bottin-Weber, U., Matzke, M., … Thöming, J. (2008). Primary biodegradation of ionic liquid cations, identification of degradation products of 1-methyl-3-octylimidazolium chloride and electrochemical wastewater treatment of poorly biodegradable compounds. Green Chem., 10(2), 214-224. doi:10.1039/b713095c
Harjani, J. R., Farrell, J., Garcia, M. T., Singer, R. D., & Scammells, P. J. (2009). Further investigation of the biodegradability of imidazolium ionic liquids. Green Chemistry, 11(6), 821. doi:10.1039/b900787c
Valkenberg, M. H., deCastro, C., & Hölderich, W. F. (2001). Immobilisation of ionic liquids on solid supports. Green Chemistry, 4(2), 88-93. doi:10.1039/b107946h
Riisagera, A., Fehrmanna, R., Haumannb, M., & Wasserscheidb, P. (2006). Supported ionic liquids: versatile reaction and separation media. Topics in Catalysis, 40(1-4), 91-102. doi:10.1007/s11244-006-0111-9
Gu, Y., & Li, G. (2009). Ionic Liquids-Based Catalysis with Solids: State of the Art. Advanced Synthesis & Catalysis, 351(6), 817-847. doi:10.1002/adsc.200900043
Kim, D. W., & Chi, D. Y. (2004). Polymer-Supported Ionic Liquids: Imidazolium Salts as Catalysts for Nucleophilic Substitution Reactions Including Fluorinations. Angewandte Chemie, 116(4), 489-491. doi:10.1002/ange.200352760
Kim, D. W., & Chi, D. Y. (2004). Polymer-Supported Ionic Liquids: Imidazolium Salts as Catalysts for Nucleophilic Substitution Reactions Including Fluorinations. Angewandte Chemie International Edition, 43(4), 483-485. doi:10.1002/anie.200352760
Kim, D. W., Hong, D. J., Jang, K. S., & Chi, D. Y. (2006). Structural Modification of Polymer-Supported Ionic Liquids as Catalysts for Nucleophilic Substitution Reactions Including Fluorination. Advanced Synthesis & Catalysis, 348(12-13), 1719-1727. doi:10.1002/adsc.200606119
Kim, D. W., Jeong, H.-J., Lim, S. T., Sohn, M.-H., & Chi, D. Y. (2008). Facile nucleophilic fluorination by synergistic effect between polymer-supported ionic liquid catalyst and tert-alcohol reaction media system. Tetrahedron, 64(19), 4209-4214. doi:10.1016/j.tet.2008.02.094
Neumann, R., & Cohen, M. (1997). Lösungsmittel-angebundene Supported-Liquid-Phase-Katalyse: Polyoxometallat-katalysierte Oxidationen. Angewandte Chemie, 109(16), 1810-1812. doi:10.1002/ange.19971091619
Neumann, R., & Cohen, M. (1997). Solvent-Anchored Supported Liquid Phase Catalysis: Polyoxometalate-Catalyzed Oxidations. Angewandte Chemie International Edition in English, 36(16), 1738-1740. doi:10.1002/anie.199717381
Biffis, A., Zecca, M., & Basato, M. (2003). A green protocol for the silylation of alcohols using bonded fluorous phase catalysisThis work was presented at the Green Solvents for Catalysis Meeting, held in Bruchsal, Germany, 13–16th October 2002. Green Chemistry, 5(2), 170-173. doi:10.1039/b210992a
Hope, E. G., Sherrington, J., & Stuart, A. M. (2006). Supported Fluorous Phase Catalysis on PTFE, Fluoroalkylated Micro- and Meso-porous Silica. Advanced Synthesis & Catalysis, 348(12-13), 1635-1639. doi:10.1002/adsc.200606141
Altava, B., Burguete, M. I., García-Verdugo, E., Karbass, N., Luis, S. V., Puzary, A., & Sans, V. (2006). Palladium N-methylimidazolium supported complexes as efficient catalysts for the Heck reaction. Tetrahedron Letters, 47(14), 2311-2314. doi:10.1016/j.tetlet.2006.02.023
Karbass, N., Sans, V., Garcia-Verdugo, E., Burguete, M. I., & Luis, S. V. (2006). Pd(0) supported onto monolithic polymers containing IL-like moieties. Continuous flow catalysis for the Heck reaction in near-critical EtOH. Chemical Communications, (29), 3095. doi:10.1039/b603224a
Lozano, P., García-Verdugo, E., Piamtongkam, R., Karbass, N., De Diego, T., Burguete, M. I., … Iborra, J. L. (2007). Bioreactors Based on Monolith-Supported Ionic Liquid Phase for Enzyme Catalysis in Supercritical Carbon Dioxide. Advanced Synthesis & Catalysis, 349(7), 1077-1084. doi:10.1002/adsc.200600554
Burguete, M. I., Erythropel, H., Garcia-Verdugo, E., Luis, S. V., & Sans, V. (2008). Base supported ionic liquid-like phases as catalysts for the batch and continuous-flow Henry reaction. Green Chemistry, 10(4), 401. doi:10.1039/b714977h
Burguete, M. I., Galindo, F., García-Verdugo, E., Karbass, N., & Luis, S. V. (2007). Polymer supported ionic liquid phases (SILPs) versus ionic liquids (ILs): How much do they look alike. Chem. Commun., (29), 3086-3088. doi:10.1039/b704611a
Köddermann, T., Wertz, C., Heintz, A., & Ludwig, R. (2006). Die Assoziation von Wasser in ionischen Flüssigkeiten: eine verlässliche Sonde zur Bestimmung der Polarität. Angewandte Chemie, 118(22), 3780-3785. doi:10.1002/ange.200504471
Köddermann, T., Wertz, C., Heintz, A., & Ludwig, R. (2006). The Association of Water in Ionic Liquids: A Reliable Measure of Polarity. Angewandte Chemie International Edition, 45(22), 3697-3702. doi:10.1002/anie.200504471
Wulf, A., Köddermann, T., Wertz, C., Heintz, A., & Ludwig, R. (2006). Water Vibrational Bands as a Polarity Indicator in Ionic Liquids. Zeitschrift für Physikalische Chemie, 220(10), 1361-1376. doi:10.1524/zpch.2006.220.10.1361
Ngo, H. L., LeCompte, K., Hargens, L., & McEwen, A. B. (2000). Thermal properties of imidazolium ionic liquids. Thermochimica Acta, 357-358, 97-102. doi:10.1016/s0040-6031(00)00373-7
Baranyai, K. J., Deacon, G. B., MacFarlane, D. R., Pringle, J. M., & Scott, J. L. (2004). Thermal Degradation of Ionic Liquids at Elevated Temperatures. Australian Journal of Chemistry, 57(2), 145. doi:10.1071/ch03221
Gaviña, F., Luis, S. V., & Costero, A. M. (1982). Thermogravimetric studies of polymeric reagents: a polymeric o-benzyne precursor. Tetrahedron Letters, 23(23), 2403-2406. doi:10.1016/s0040-4039(00)87353-0
Li, Y., Fan, Y., & Ma, J. (2001). Thermal, physical and chemical stability of porous polystyrene-type beads with different degrees of crosslinking. Polymer Degradation and Stability, 73(1), 163-167. doi:10.1016/s0141-3910(01)00083-0
Huddleston, J. G., Visser, A. E., Reichert, W. M., Willauer, H. D., Broker, G. A., & Rogers, R. D. (2001). Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chemistry, 3(4), 156-164. doi:10.1039/b103275p
Chiappe, C., Malvaldi, M., & Pomelli, C. S. (2009). Ionic liquids: Solvation ability and polarity. Pure and Applied Chemistry, 81(4), 767-776. doi:10.1351/pac-con-08-09-08
Reichardt, C. (1992). Solvatochromism, thermochromism, piezochromism, halochromism, and chiro-solvatochromism of pyridinium N-phenoxide betaine dyes. Chemical Society Reviews, 21(3), 147. doi:10.1039/cs9922100147
Reichardt, C. (1994). Solvatochromic Dyes as Solvent Polarity Indicators. Chemical Reviews, 94(8), 2319-2358. doi:10.1021/cr00032a005
Paley, M. S., McGill, R. A., Howard, S. C., Wallace, S. E., & Harris, J. M. (1990). Solvatochromism: a new method for polymer characterization. Macromolecules, 23(21), 4557-4564. doi:10.1021/ma00223a011
Tavener, S. J., Clark, J. H., Gray, G. W., Heath, P. A., & Macquarrie, D. J. (1997). Reichardt’s dye as a probe for surface polarity of chemically and thermally treated silicas. Chemical Communications, (12), 1147-1148. doi:10.1039/a701681f
Macquarrie, D. J., Tavener, S. J., Gray, G. W., Heath, P. A., Rafelt, J. S., Saulzet, S. I., … Fajula, F. (1999). The use of Reichardt’s dye as an indicator of surface polarity. New Journal of Chemistry, 23(7), 725-731. doi:10.1039/a901563i
Reichardt, C. (2005). Polarity of ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes. Green Chemistry, 7(5), 339. doi:10.1039/b500106b
Dzyuba, S. V., & Bartsch, R. A. (2002). Expanding the polarity range of ionic liquids. Tetrahedron Letters, 43(26), 4657-4659. doi:10.1016/s0040-4039(02)00858-4
(s. f.). doi:10.1021/jp053946
Weingärtner, H. (2006). The Static Dielectric Constant of Ionic Liquids. Zeitschrift für Physikalische Chemie, 220(10), 1395-1405. doi:10.1524/zpch.2006.220.10.1395
Cammarata, L., Kazarian, S. G., Salter, P. A., & Welton, T. (2001). Molecular states of water in room temperature ionic liquidsElectronic Supplementary Information available. See http://www.rsc.org/suppdata/cp/b1/b106900d/. Physical Chemistry Chemical Physics, 3(23), 5192-5200. doi:10.1039/b106900d
Nakajima, A. (1974). Solvent enhancement in the first singlet-singlet transition of pyrene-d10. Spectrochimica Acta Part A: Molecular Spectroscopy, 30(3), 860-862. doi:10.1016/0584-8539(74)80203-5
Dong, D. C., & Winnik, M. A. (1982). THE Py SCALE OF SOLVENT POLARITIES. SOLVENT EFFECTS ON THE VIBRONIC FINE STRUCTURE OF PYRENE FLUORESCENCE and EMPIRICAL CORRELATIONS WITH ETand Y VALUES. Photochemistry and Photobiology, 35(1), 17-21. doi:10.1111/j.1751-1097.1982.tb03805.x
Lianos, P., & Georghiou, S. (1979). SOLUTE-SOLVENT INTERACTION AND ITS EFFECT ON THE VIBRONIC AND VIBRATIONAL STRUCTURE OF PYRENE SPECTRA. Photochemistry and Photobiology, 30(3), 355-362. doi:10.1111/j.1751-1097.1979.tb07368.x
Dong, D. C., & Winnik, M. A. (1984). The Py scale of solvent polarities. Canadian Journal of Chemistry, 62(11), 2560-2565. doi:10.1139/v84-437
Fletcher, K. A., Storey, I. A., Hendricks, A. E., Pandey, S., & Pandey, S. (2001). Behavior of the solvatochromic probes Reichardt’s dye, pyrene, dansylamide, Nile Red and 1-pyrenecarbaldehyde within the room-temperature ionic liquid bmimPF6. Green Chemistry, 3(5), 210-215. doi:10.1039/b103592b
Karpovich, D. S., & Blanchard, G. J. (1995). Relating the polarity-dependent fluorescence response of pyrene to vibronic coupling. Achieving a fundamental understanding of the py polarity scale. The Journal of Physical Chemistry, 99(12), 3951-3958. doi:10.1021/j100012a014
Nakashima, K., Winnik, M. A., Dai, K. H., Kramer, E. J., & Washiyama, J. (1992). Fluorescent probe studies on the microstructure of polystyrene-poly(vinylpyridine) diblock copolymer film. Macromolecules, 25(25), 6866-6870. doi:10.1021/ma00051a022
Kalyanasundaram, K., & Thomas, J. K. (1977). Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. Journal of the American Chemical Society, 99(7), 2039-2044. doi:10.1021/ja00449a004
Sherrington, D. C. (1998). Preparation, structure and morphology of polymer supports. Chemical Communications, (21), 2275-2286. doi:10.1039/a803757d
Altava, B., Burguete, M. ., Garcı́a-Verdugo, E., Luis, S. ., Vicent, M. ., & Mayoral, J. . (2001). Supported chiral catalysts: the role of the polymeric network. Reactive and Functional Polymers, 48(1-3), 25-35. doi:10.1016/s1381-5148(01)00036-0
Garcia-Bernabé, A., Compañ, V., Burguete, M. I., García-Verdugo, E., Karbass, N., Luis, S. V., & Riande, E. (2010). Conductivity and Polarization Processes in Highly Cross-Linked Supported Ionic Liquid-Like Phases. The Journal of Physical Chemistry C, 114(15), 7030-7037. doi:10.1021/jp910535z
Tang, J., Radosz, M., & Shen, Y. (2008). Poly(ionic liquid)s as Optically Transparent Microwave-Absorbing Materials. Macromolecules, 41(2), 493-496. doi:10.1021/ma071762i
Huang, M.-M., & Weingärtner, H. (2008). Protic Ionic Liquids with Unusually High Dielectric Permittivities. ChemPhysChem, 9(15), 2172-2173. doi:10.1002/cphc.200800523
Hunger, J., Stoppa, A., Schrödle, S., Hefter, G., & Buchner, R. (2009). Temperature Dependence of the Dielectric Properties and Dynamics of Ionic Liquids. ChemPhysChem, 10(4), 723-733. doi:10.1002/cphc.200800483
Astruc, D., Lu, F., & Aranzaes, J. R. (2005). Nanopartikel als regenerierbare Katalysatoren: an der Nahtstelle zwischen homogener und heterogener Katalyse. Angewandte Chemie, 117(48), 8062-8083. doi:10.1002/ange.200500766
Astruc, D., Lu, F., & Aranzaes, J. R. (2005). Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis. Angewandte Chemie International Edition, 44(48), 7852-7872. doi:10.1002/anie.200500766
Migowski, P., & Dupont, J. (2006). Catalytic Applications of Metal Nanoparticles in Imidazolium Ionic Liquids. Chemistry - A European Journal, 13(1), 32-39. doi:10.1002/chem.200601438
Lozano, P., García-Verdugo, E., Karbass, N., Montague, K., De Diego, T., Burguete, M. I., & Luis, S. V. (2010). Supported Ionic Liquid-Like Phases (SILLPs) for enzymatic processes: Continuous KR and DKR in SILLP–scCO2 systems. Green Chemistry, 12(10), 1803. doi:10.1039/c0gc00076k
Burguete, M. I., García-Verdugo, E., Garcia-Villar, I., Gelat, F., Licence, P., Luis, S. V., & Sans, V. (2010). Pd catalysts immobilized onto gel-supported ionic liquid-like phases (g-SILLPs): A remarkable effect of the nature of the support. Journal of Catalysis, 269(1), 150-160. doi:10.1016/j.jcat.2009.11.002
Jiang, Y., Guo, C., Xia, H., Mahmood, I., Liu, C., & Liu, H. (2009). Magnetic nanoparticles supported ionic liquids for lipase immobilization: Enzyme activity in catalyzing esterification. Journal of Molecular Catalysis B: Enzymatic, 58(1-4), 103-109. doi:10.1016/j.molcatb.2008.12.001
Nakashima, K., Kamiya, N., Koda, D., Maruyama, T., & Goto, M. (2009). Enzyme encapsulation in microparticles composed of polymerized ionic liquids for highly active and reusable biocatalysts. Organic & Biomolecular Chemistry, 7(11), 2353. doi:10.1039/b823064a
Van Rantwijk, F., & Sheldon, R. A. (2007). Biocatalysis in Ionic Liquids. Chemical Reviews, 107(6), 2757-2785. doi:10.1021/cr050946x
[-]