Gooding, J. J. (2006). Biosensor technology for detecting biological warfare agents: Recent progress and future trends. Analytica Chimica Acta, 559(2), 137-151. doi:10.1016/j.aca.2005.12.020
Eubanks, L. M., Dickerson, T. J., & Janda, K. D. (2007). Technological advancements for the detection of and protection against biological and chemical warfare agents. Chemical Society Reviews, 36(3), 458. doi:10.1039/b615227a
Smith, B. M. (2008). Catalytic methods for the destruction of chemical warfare agents under ambient conditions. Chem. Soc. Rev., 37(3), 470-478. doi:10.1039/b705025a
[+]
Gooding, J. J. (2006). Biosensor technology for detecting biological warfare agents: Recent progress and future trends. Analytica Chimica Acta, 559(2), 137-151. doi:10.1016/j.aca.2005.12.020
Eubanks, L. M., Dickerson, T. J., & Janda, K. D. (2007). Technological advancements for the detection of and protection against biological and chemical warfare agents. Chemical Society Reviews, 36(3), 458. doi:10.1039/b615227a
Smith, B. M. (2008). Catalytic methods for the destruction of chemical warfare agents under ambient conditions. Chem. Soc. Rev., 37(3), 470-478. doi:10.1039/b705025a
Wheelis, M. (2002). Biotechnology and chemical weapons control. Pure and Applied Chemistry, 74(12), 2247-2251. doi:10.1351/pac200274122247
Hill, H. H., & Martin, S. J. (2002). Conventional analytical methods for chemical warfare agents. Pure and Applied Chemistry, 74(12), 2281-2291. doi:10.1351/pac200274122281
McBride, M. T., Gammon, S., Pitesky, M., O’Brien, T. W., Smith, T., Aldrich, J., … Venkateswaran, K. S. (2003). Multiplexed Liquid Arrays for Simultaneous Detection of Simulants of Biological Warfare Agents. Analytical Chemistry, 75(8), 1924-1930. doi:10.1021/ac026379k
Russell, A. J., Berberich, J. A., Drevon, G. F., & Koepsel, R. R. (2003). Biomaterials for Mediation of Chemical and Biological Warfare Agents. Annual Review of Biomedical Engineering, 5(1), 1-27. doi:10.1146/annurev.bioeng.5.121202.125602
Wang, H., Wang, J., Choi, D., Tang, Z., Wu, H., & Lin, Y. (2009). EQCM immunoassay for phosphorylated acetylcholinesterase as a biomarker for organophosphate exposures based on selective zirconia adsorption and enzyme-catalytic precipitation. Biosensors and Bioelectronics, 24(8), 2377-2383. doi:10.1016/j.bios.2008.12.013
Mulchandani, A., Kaneva, I., & Chen, W. (1998). Biosensor for Direct Determination of Organophosphate Nerve Agents Using RecombinantEscherichia coliwith Surface-Expressed Organophosphorus Hydrolase. 2. Fiber-Optic Microbial Biosensor. Analytical Chemistry, 70(23), 5042-5046. doi:10.1021/ac980643l
Mulchandani, A., Mulchandani, P., Kaneva, I., & Chen, W. (1998). Biosensor for Direct Determination of Organophosphate Nerve Agents Using RecombinantEscherichia coliwith Surface-Expressed Organophosphorus Hydrolase. 1. Potentiometric Microbial Electrode. Analytical Chemistry, 70(19), 4140-4145. doi:10.1021/ac9805201
Steiner, W. E., Klopsch, S. J., English, W. A., Clowers, B. H., & Hill, H. H. (2005). Detection of a Chemical Warfare Agent Simulant in Various Aerosol Matrixes by Ion Mobility Time-of-Flight Mass Spectrometry. Analytical Chemistry, 77(15), 4792-4799. doi:10.1021/ac050278f
Khan, M. A. K., Long, Y.-T., Schatte, G., & Kraatz, H.-B. (2007). Surface Studies of Aminoferrocene Derivatives on Gold: Electrochemical Sensors for Chemical Warfare Agents. Analytical Chemistry, 79(7), 2877-2884. doi:10.1021/ac061981m
Shulga, O. V., & Palmer, C. (2006). Detection of V-type nerve agent degradation products at electrodes modified by PPy/PQQ using CaCl2 as supporting electrolyte. Analytical and Bioanalytical Chemistry, 385(6), 1116-1123. doi:10.1007/s00216-006-0531-1
Chen, J.-C., Shih, J.-L., Liu, C.-H., Kuo, M.-Y., & Zen, J.-M. (2006). Disposable Electrochemical Sensor for Determination of Nitroaromatic Compounds by a Single-Run Approach. Analytical Chemistry, 78(11), 3752-3757. doi:10.1021/ac060002n
Liu, G., & Lin, Y. (2006). Biosensor Based on Self-Assembling Acetylcholinesterase on Carbon Nanotubes for Flow Injection/Amperometric Detection of Organophosphate Pesticides and Nerve Agents. Analytical Chemistry, 78(3), 835-843. doi:10.1021/ac051559q
Joshi, K. A., Prouza, M., Kum, M., Wang, J., Tang, J., Haddon, R., … Mulchandani, A. (2006). V-Type Nerve Agent Detection Using a Carbon Nanotube-Based Amperometric Enzyme Electrode. Analytical Chemistry, 78(1), 331-336. doi:10.1021/ac051052f
Liu, G., & Lin, Y. (2005). Electrochemical Sensor for Organophosphate Pesticides and Nerve Agents Using Zirconia Nanoparticles as Selective Sorbents. Analytical Chemistry, 77(18), 5894-5901. doi:10.1021/ac050791t
Wang, J., Chen, L., Mulchandani, A., Mulchandani, P., & Chen, W. (1999). Remote Biosensor for In-Situ MOnitoring of Organophosphate Nerve Agents. Electroanalysis, 11(12), 866-869. doi:10.1002/(sici)1521-4109(199908)11:12<866::aid-elan866>3.0.co;2-1
Zuo, G., Li, X., Li, P., Yang, T., Wang, Y., Cheng, Z., & Feng, S. (2006). Detection of trace organophosphorus vapor with a self-assembled bilayer functionalized SiO2 microcantilever piezoresistive sensor. Analytica Chimica Acta, 580(2), 123-127. doi:10.1016/j.aca.2006.07.071
Karnati, C., Du, H., Ji, H.-F., Xu, X., Lvov, Y., Mulchandani, A., … Chen, W. (2007). Organophosphorus hydrolase multilayer modified microcantilevers for organophosphorus detection. Biosensors and Bioelectronics, 22(11), 2636-2642. doi:10.1016/j.bios.2006.10.027
Zhao, Q., Zhu, Q., Shih, W. Y., & Shih, W.-H. (2006). Array adsorbent-coated lead zirconate titanate (PZT)/stainless steel cantilevers for dimethyl methylphosphonate (DMMP) detection. Sensors and Actuators B: Chemical, 117(1), 74-79. doi:10.1016/j.snb.2005.10.048
He, W., Liu, Z., Du, X., Jiang, Y., & Xiao, D. (2008). Analytical application of poly{methyl[3-(2-hydroxy-3,4-difluoro)phenyl]propyl siloxane} as a QCM coating for DMMP detection. Talanta, 76(3), 698-702. doi:10.1016/j.talanta.2008.04.022
Walker, J. P., Kimble, K. W., & Asher, S. A. (2007). Photonic crystal sensor for organophosphate nerve agents utilizing the organophosphorus hydrolase enzyme. Analytical and Bioanalytical Chemistry, 389(7-8), 2115-2124. doi:10.1007/s00216-007-1599-y
Walker, J. P., & Asher, S. A. (2005). Acetylcholinesterase-Based Organophosphate Nerve Agent Sensing Photonic Crystal. Analytical Chemistry, 77(6), 1596-1600. doi:10.1021/ac048562e
Aernecke, M. J., & Walt, D. R. (2009). Optical-fiber arrays for vapor sensing. Sensors and Actuators B: Chemical, 142(2), 464-469. doi:10.1016/j.snb.2009.06.054
Burnworth, M., Rowan, S. J., & Weder, C. (2007). Fluorescent Sensors for the Detection of Chemical Warfare Agents. Chemistry - A European Journal, 13(28), 7828-7836. doi:10.1002/chem.200700720
Thomas, S. W., Joly, G. D., & Swager, T. M. (2007). Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chemical Reviews, 107(4), 1339-1386. doi:10.1021/cr0501339
Royo, S., Martínez-Máñez, R., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2007). Chromogenic and fluorogenic reagents for chemical warfare nerve agents’ detection. Chemical Communications, (46), 4839. doi:10.1039/b707063b
Giordano, B., & Collins, G. (2007). Synthetic Methods Applied to the Detection of Chemical Warfare Nerve Agents. Current Organic Chemistry, 11(3), 255-265. doi:10.2174/138527207779940883
Mohr, G. J. (2006). New chromogenic and fluorogenic reagents and sensors for neutral and ionic analytes based on covalent bond formation–a review of recent developments. Analytical and Bioanalytical Chemistry, 386(5), 1201-1214. doi:10.1007/s00216-006-0647-3
Van Houten, K. A., Heath, D. C., & Pilato, R. S. (1998). Rapid Luminescent Detection of Phosphate Esters in Solution and the Gas Phase Using (dppe)Pt{S2C2(2-pyridyl)(CH2CH2OH)}. Journal of the American Chemical Society, 120(47), 12359-12360. doi:10.1021/ja982365d
Zhang, S.-W., & Swager, T. M. (2003). Fluorescent Detection of Chemical Warfare Agents: Functional Group Specific Ratiometric Chemosensors. Journal of the American Chemical Society, 125(12), 3420-3421. doi:10.1021/ja029265z
Dale, T. J., & Rebek, J. (2006). Fluorescent Sensors for Organophosphorus Nerve Agent Mimics. Journal of the American Chemical Society, 128(14), 4500-4501. doi:10.1021/ja057449i
Ilhan, F., Tyson, D. S., & Meador, M. A. (2004). Synthesis and Chemosensory Behavior of Anthracene Bisimide Derivatives. Chemistry of Materials, 16(16), 2978-2980. doi:10.1021/cm049508h
Bencic-Nagale, S., Sternfeld, T., & Walt, D. R. (2006). Microbead Chemical Switches: An Approach to Detection of Reactive Organophosphate Chemical Warfare Agent Vapors. Journal of the American Chemical Society, 128(15), 5041-5048. doi:10.1021/ja057057b
Shunmugam, R., & Tew, G. N. (2008). Terpyridine–Lanthanide Complexes Respond to Fluorophosphate Containing Nerve Gas G-Agent Surrogates. Chemistry - A European Journal, 14(18), 5409-5412. doi:10.1002/chem.200800461
Kang, S., Kim, S., Yang, Y.-K., Bae, S., & Tae, J. (2009). Fluorescent and colorimetric detection of acid vapors by using solid-supported rhodamine hydrazides. Tetrahedron Letters, 50(17), 2010-2012. doi:10.1016/j.tetlet.2009.02.087
Wallace, K. J., Morey, J., Lynch, V. M., & Anslyn, E. V. (2005). Colorimetric detection of chemical warfare simulants. New Journal of Chemistry, 29(11), 1469. doi:10.1039/b506100h
Wallace, K. J., Fagbemi, R. I., Folmer-Andersen, F. J., Morey, J., Lynth, V. M., & Anslyn, E. V. (2006). Detection of chemical warfare simulants by phosphorylation of a coumarin oximate. Chemical Communications, (37), 3886. doi:10.1039/b609861d
Terrier, F., Rodriguez-Dafonte, P., Le Guével, E., & Moutiers, G. (2006). Revisiting the reactivity of oximate α-nucleophiles with electrophilic phosphorus centers. Relevance to detoxification of sarin, soman and DFP under mild conditions. Org. Biomol. Chem., 4(23), 4352-4363. doi:10.1039/b609658c
Hewage, H. S., Wallace, K. J., & Anslyn, E. V. (2007). Novel chemiluminescent detection of chemical warfare simulant. Chemical Communications, (38), 3909. doi:10.1039/b706624d
Dale, T. J., & Rebek, J. (2009). Hydroxy Oximes as Organophosphorus Nerve Agent Sensors. Angewandte Chemie, 121(42), 7990-7992. doi:10.1002/ange.200902820
Dale, T. J., & Rebek, J. (2009). Hydroxy Oximes as Organophosphorus Nerve Agent Sensors. Angewandte Chemie International Edition, 48(42), 7850-7852. doi:10.1002/anie.200902820
Knapton, D., Burnworth, M., Rowan, S. J., & Weder, C. (2006). Fluorescent Organometallic Sensors for the Detection of Chemical-Warfare-Agent Mimics. Angewandte Chemie, 118(35), 5957-5961. doi:10.1002/ange.200601634
Knapton, D., Burnworth, M., Rowan, S. J., & Weder, C. (2006). Fluorescent Organometallic Sensors for the Detection of Chemical-Warfare-Agent Mimics. Angewandte Chemie International Edition, 45(35), 5825-5829. doi:10.1002/anie.200601634
Climent, E., Martí, A., Royo, S., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Parra, M. (2010). Chromogenic Detection of Nerve Agent Mimics by Mass Transport Control at the Surface of Bifunctionalized Silica Nanoparticles. Angewandte Chemie, 122(34), 6081-6084. doi:10.1002/ange.201001088
Climent, E., Martí, A., Royo, S., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Parra, M. (2010). Chromogenic Detection of Nerve Agent Mimics by Mass Transport Control at the Surface of Bifunctionalized Silica Nanoparticles. Angewandte Chemie International Edition, 49(34), 5945-5948. doi:10.1002/anie.201001088
Costero, A. M., Gil, S., Parra, M., Mancini, P. M. E., Martínez-Máñez, R., Sancenón, F., & Royo, S. (2008). Chromogenic detection of nerve agent mimics. Chemical Communications, (45), 6002. doi:10.1039/b811247a
Li, H., Zhou, D., Huang, C., Xu, J., Li, T., Zhao, X., & Xia, X. (1996). Langmuir–Blodgett film and second harmonic generation of a new type of amphiphilic non-linear optical bis-chromophore complex dye. J. Chem. Soc., Faraday Trans., 92(14), 2585-2592. doi:10.1039/ft9969202585
Peor, N., Sfez, R., & Yitzchaik, S. (2008). Variable Density Effect of Self-Assembled Polarizable Monolayers on the Electronic Properties of Silicon. Journal of the American Chemical Society, 130(12), 4158-4165. doi:10.1021/ja077933g
Li, H., Huang, C., Zhou, Y., Zhao, X., Xia, X., Li, T., & Bai, J. (1995). Synthesis, characterization, Langmuir–Blodgett film deposition and non-linear optical properties of a series of new non-linear optical materials based on azo dyes containing europium complex anions. J. Mater. Chem., 5(11), 1871-1878. doi:10.1039/jm9950501871
Guha, A. K., Lee, H. W., & Lee, I. (2000). Pyridinolysis of Phenyl-Substituted Phenyl Chlorophosphates in Acetonitrile. The Journal of Organic Chemistry, 65(1), 12-15. doi:10.1021/jo990671j
Bourne, N., & Williams, A. (1984). Evidence for a single transition state in the transfer of the phosphoryl group (-PO32-) to nitrogen nucleophiles from pyridinio-N-phosphonates. Journal of the American Chemical Society, 106(24), 7591-7596. doi:10.1021/ja00336a046
Pipko, S. E., Bezgubenko, L. V., Sinitsa, A. D., Rusanov, E. B., Kapustin, E. G., Povolotskii, M. I., & Shvadchak, V. V. (2008). Synthesis and structure of complexes of phosphorus pentachloride with 4-dimethylaminopyridine andn-methylimidazole. Heteroatom Chemistry, 19(2), 171-177. doi:10.1002/hc.20392
Jameson, G. W., & Lawlor, J. M. (1970). Aminolysis of N-phosphorylated pyridines. Journal of the Chemical Society B: Physical Organic, 53. doi:10.1039/j29700000053
Klotz, I. M., Fiess, H. A., Chen Ho, J. Y., & Mellody, M. (1954). The Position of the Proton in Substituted Azobenzene Molecules. Journal of the American Chemical Society, 76(20), 5136-5140. doi:10.1021/ja01649a041
Kubota, H., Idei, M., & Motomizu, S. (1990). Liquid-liquid distribution of ion associates of anions with 4-[4-alkyl(aryl)aminophenylazo]pyridines and their use as spectrophotometric reagents for anionic surfactants. The Analyst, 115(8), 1109. doi:10.1039/an9901501109
Ábalos, T., Royo, S., Martínez-Máñez, R., Sancenón, F., Soto, J., Costero, A. M., … Parra, M. (2009). Surfactant-assisted chromogenic sensing of cyanide in water. New Journal of Chemistry, 33(8), 1641. doi:10.1039/b909705h
Margraf, G., Pattacini, R., Messaoudi, A., & Braunstein, P. (2006). Intra- and inter-molecular phosphoryl migration in phosphinothiazolines; precursors to polynuclear complexes and bimetallic coordination polymers. Chemical Communications, (29), 3098. doi:10.1039/b603495k
Pattacini, R., Margraf, G., Messaoudi, A., Oberbeckmann-Winter, N., & Braunstein, P. (2008). Formation of P−C Bonds under Unexpectedly Mild Conditions. Phosphoryl Migration and Metal Coordination of Diphenylphosphinomethyl-oxazolines and -thiazolines. Inorganic Chemistry, 47(21), 9886-9897. doi:10.1021/ic800934h
Vijayakumar, C. T., Jayaprakash, D., & Nanjan, M. J. (2007). Synthesis and Pyrolysis-Field Ionization Mass Spectrometric Study of an Aromatic Polyamide Having Azo Group in the Main Chain. Polymer-Plastics Technology and Engineering, 46(12), 1187-1194. doi:10.1080/03602550701575839
Gu, Z., Ma, J., Zhao, X., Wu, J., & Zhang, D. (2006). Reduction of nitriles to amines in positive ion electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 20(19), 2969-2972. doi:10.1002/rcm.2690
Nilsson, J., Kraszewski, A., & Stawinski, J. (2001). Reinvestigation of the 31P NMR evidence for the formation of diorganyl phosphoropyridinium intermediates. Journal of the Chemical Society, Perkin Transactions 2, (12), 2263-2266. doi:10.1039/b107792a
Rohrbaugh, D. K., & Sarver, E. W. (1998). Detection of alkyl methylphosphonic acids in complex matrices by gas chromatography–tandem mass spectrometry. Journal of Chromatography A, 809(1-2), 141-150. doi:10.1016/s0021-9673(98)00184-8
[-]