- -

Chromogenic, specific detection of the nerve-agent mimic DCNP (a Tabun mimic)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Chromogenic, specific detection of the nerve-agent mimic DCNP (a Tabun mimic)

Mostrar el registro completo del ítem

Royo Calvo, S.; Costero Nieto, AM.; Parra Álvarez, M.; Gil Grau, S.; Martínez Mañez, R.; Sancenón Galarza, F. (2011). Chromogenic, specific detection of the nerve-agent mimic DCNP (a Tabun mimic). Chemistry - A European Journal. 17:6931-6934. https://doi.org/10.1002/chem.201100602

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/33406

Ficheros en el ítem

Metadatos del ítem

Título: Chromogenic, specific detection of the nerve-agent mimic DCNP (a Tabun mimic)
Autor: Royo Calvo, Santiago Costero Nieto, Ana María Parra Álvarez, Margarita Gil Grau, Salvador Martínez Mañez, Ramón Sancenón Galarza, Félix
Entidad UPV: Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
Nerve-gas detection: An azo dye with pyridine and aniline moieties can selectively detect diethylcyanophosphonate (DCNP) from diisopropylfluorophosphate (DFP) and diethylchlorophosphate (DCP) by colour changes. Upon addition ...[+]
Palabras clave: Chromogenic detection , Diisopropylfluorophosphate , Molecular recognition , Nerve agents , Sensors
Derechos de uso: Cerrado
Fuente:
Chemistry - A European Journal. (issn: 0947-6539 )
DOI: 10.1002/chem.201100602
Editorial:
Wiley-VCH Verlag
Versión del editor: http://dx.doi.org/10.1002/chem.201100602
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MAT2009-14564-C04/
info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/ /
info:eu-repo/grantAgreement/Generalitat Valenciana//ACOMP07%2F2009%2F080/ES/Desarrollo de quimiosensores en solución para especies de pequeño tamaño con interés biológico/ /
Agradecimientos:
We thank the Spanish Government (projects MAT2009-14564-C04) and the Regional Valencian Government (Generalitat Valencia; project PROMETEO/2009/016 and ACOMP07/080) for support. S.R. is grateful to the Generalitat Valenciana ...[+]
Tipo: Artículo

References

Gooding, J. J. (2006). Biosensor technology for detecting biological warfare agents: Recent progress and future trends. Analytica Chimica Acta, 559(2), 137-151. doi:10.1016/j.aca.2005.12.020

Eubanks, L. M., Dickerson, T. J., & Janda, K. D. (2007). Technological advancements for the detection of and protection against biological and chemical warfare agents. Chemical Society Reviews, 36(3), 458. doi:10.1039/b615227a

Smith, B. M. (2008). Catalytic methods for the destruction of chemical warfare agents under ambient conditions. Chem. Soc. Rev., 37(3), 470-478. doi:10.1039/b705025a [+]
Gooding, J. J. (2006). Biosensor technology for detecting biological warfare agents: Recent progress and future trends. Analytica Chimica Acta, 559(2), 137-151. doi:10.1016/j.aca.2005.12.020

Eubanks, L. M., Dickerson, T. J., & Janda, K. D. (2007). Technological advancements for the detection of and protection against biological and chemical warfare agents. Chemical Society Reviews, 36(3), 458. doi:10.1039/b615227a

Smith, B. M. (2008). Catalytic methods for the destruction of chemical warfare agents under ambient conditions. Chem. Soc. Rev., 37(3), 470-478. doi:10.1039/b705025a

Wheelis, M. (2002). Biotechnology and chemical weapons control. Pure and Applied Chemistry, 74(12), 2247-2251. doi:10.1351/pac200274122247

Hill, H. H., & Martin, S. J. (2002). Conventional analytical methods for chemical warfare agents. Pure and Applied Chemistry, 74(12), 2281-2291. doi:10.1351/pac200274122281

McBride, M. T., Gammon, S., Pitesky, M., O’Brien, T. W., Smith, T., Aldrich, J., … Venkateswaran, K. S. (2003). Multiplexed Liquid Arrays for Simultaneous Detection of Simulants of Biological Warfare Agents. Analytical Chemistry, 75(8), 1924-1930. doi:10.1021/ac026379k

Russell, A. J., Berberich, J. A., Drevon, G. F., & Koepsel, R. R. (2003). Biomaterials for Mediation of Chemical and Biological Warfare Agents. Annual Review of Biomedical Engineering, 5(1), 1-27. doi:10.1146/annurev.bioeng.5.121202.125602

Wang, H., Wang, J., Choi, D., Tang, Z., Wu, H., & Lin, Y. (2009). EQCM immunoassay for phosphorylated acetylcholinesterase as a biomarker for organophosphate exposures based on selective zirconia adsorption and enzyme-catalytic precipitation. Biosensors and Bioelectronics, 24(8), 2377-2383. doi:10.1016/j.bios.2008.12.013

Mulchandani, A., Kaneva, I., & Chen, W. (1998). Biosensor for Direct Determination of Organophosphate Nerve Agents Using RecombinantEscherichia coliwith Surface-Expressed Organophosphorus Hydrolase. 2. Fiber-Optic Microbial Biosensor. Analytical Chemistry, 70(23), 5042-5046. doi:10.1021/ac980643l

Mulchandani, A., Mulchandani, P., Kaneva, I., & Chen, W. (1998). Biosensor for Direct Determination of Organophosphate Nerve Agents Using RecombinantEscherichia coliwith Surface-Expressed Organophosphorus Hydrolase. 1. Potentiometric Microbial Electrode. Analytical Chemistry, 70(19), 4140-4145. doi:10.1021/ac9805201

Steiner, W. E., Klopsch, S. J., English, W. A., Clowers, B. H., & Hill, H. H. (2005). Detection of a Chemical Warfare Agent Simulant in Various Aerosol Matrixes by Ion Mobility Time-of-Flight Mass Spectrometry. Analytical Chemistry, 77(15), 4792-4799. doi:10.1021/ac050278f

Khan, M. A. K., Long, Y.-T., Schatte, G., & Kraatz, H.-B. (2007). Surface Studies of Aminoferrocene Derivatives on Gold:  Electrochemical Sensors for Chemical Warfare Agents. Analytical Chemistry, 79(7), 2877-2884. doi:10.1021/ac061981m

Shulga, O. V., & Palmer, C. (2006). Detection of V-type nerve agent degradation products at electrodes modified by PPy/PQQ using CaCl2 as supporting electrolyte. Analytical and Bioanalytical Chemistry, 385(6), 1116-1123. doi:10.1007/s00216-006-0531-1

Chen, J.-C., Shih, J.-L., Liu, C.-H., Kuo, M.-Y., & Zen, J.-M. (2006). Disposable Electrochemical Sensor for Determination of Nitroaromatic Compounds by a Single-Run Approach. Analytical Chemistry, 78(11), 3752-3757. doi:10.1021/ac060002n

Liu, G., & Lin, Y. (2006). Biosensor Based on Self-Assembling Acetylcholinesterase on Carbon Nanotubes for Flow Injection/Amperometric Detection of Organophosphate Pesticides and Nerve Agents. Analytical Chemistry, 78(3), 835-843. doi:10.1021/ac051559q

Joshi, K. A., Prouza, M., Kum, M., Wang, J., Tang, J., Haddon, R., … Mulchandani, A. (2006). V-Type Nerve Agent Detection Using a Carbon Nanotube-Based Amperometric Enzyme Electrode. Analytical Chemistry, 78(1), 331-336. doi:10.1021/ac051052f

Liu, G., & Lin, Y. (2005). Electrochemical Sensor for Organophosphate Pesticides and Nerve Agents Using Zirconia Nanoparticles as Selective Sorbents. Analytical Chemistry, 77(18), 5894-5901. doi:10.1021/ac050791t

Wang, J., Chen, L., Mulchandani, A., Mulchandani, P., & Chen, W. (1999). Remote Biosensor for In-Situ MOnitoring of Organophosphate Nerve Agents. Electroanalysis, 11(12), 866-869. doi:10.1002/(sici)1521-4109(199908)11:12<866::aid-elan866>3.0.co;2-1

Zuo, G., Li, X., Li, P., Yang, T., Wang, Y., Cheng, Z., & Feng, S. (2006). Detection of trace organophosphorus vapor with a self-assembled bilayer functionalized SiO2 microcantilever piezoresistive sensor. Analytica Chimica Acta, 580(2), 123-127. doi:10.1016/j.aca.2006.07.071

Karnati, C., Du, H., Ji, H.-F., Xu, X., Lvov, Y., Mulchandani, A., … Chen, W. (2007). Organophosphorus hydrolase multilayer modified microcantilevers for organophosphorus detection. Biosensors and Bioelectronics, 22(11), 2636-2642. doi:10.1016/j.bios.2006.10.027

Zhao, Q., Zhu, Q., Shih, W. Y., & Shih, W.-H. (2006). Array adsorbent-coated lead zirconate titanate (PZT)/stainless steel cantilevers for dimethyl methylphosphonate (DMMP) detection. Sensors and Actuators B: Chemical, 117(1), 74-79. doi:10.1016/j.snb.2005.10.048

He, W., Liu, Z., Du, X., Jiang, Y., & Xiao, D. (2008). Analytical application of poly{methyl[3-(2-hydroxy-3,4-difluoro)phenyl]propyl siloxane} as a QCM coating for DMMP detection. Talanta, 76(3), 698-702. doi:10.1016/j.talanta.2008.04.022

Walker, J. P., Kimble, K. W., & Asher, S. A. (2007). Photonic crystal sensor for organophosphate nerve agents utilizing the organophosphorus hydrolase enzyme. Analytical and Bioanalytical Chemistry, 389(7-8), 2115-2124. doi:10.1007/s00216-007-1599-y

Walker, J. P., & Asher, S. A. (2005). Acetylcholinesterase-Based Organophosphate Nerve Agent Sensing Photonic Crystal. Analytical Chemistry, 77(6), 1596-1600. doi:10.1021/ac048562e

Aernecke, M. J., & Walt, D. R. (2009). Optical-fiber arrays for vapor sensing. Sensors and Actuators B: Chemical, 142(2), 464-469. doi:10.1016/j.snb.2009.06.054

Burnworth, M., Rowan, S. J., & Weder, C. (2007). Fluorescent Sensors for the Detection of Chemical Warfare Agents. Chemistry - A European Journal, 13(28), 7828-7836. doi:10.1002/chem.200700720

Thomas, S. W., Joly, G. D., & Swager, T. M. (2007). Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chemical Reviews, 107(4), 1339-1386. doi:10.1021/cr0501339

Royo, S., Martínez-Máñez, R., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2007). Chromogenic and fluorogenic reagents for chemical warfare nerve agents’ detection. Chemical Communications, (46), 4839. doi:10.1039/b707063b

Giordano, B., & Collins, G. (2007). Synthetic Methods Applied to the Detection of Chemical Warfare Nerve Agents. Current Organic Chemistry, 11(3), 255-265. doi:10.2174/138527207779940883

Mohr, G. J. (2006). New chromogenic and fluorogenic reagents and sensors for neutral and ionic analytes based on covalent bond formation–a review of recent developments. Analytical and Bioanalytical Chemistry, 386(5), 1201-1214. doi:10.1007/s00216-006-0647-3

Van Houten, K. A., Heath, D. C., & Pilato, R. S. (1998). Rapid Luminescent Detection of Phosphate Esters in Solution and the Gas Phase Using (dppe)Pt{S2C2(2-pyridyl)(CH2CH2OH)}. Journal of the American Chemical Society, 120(47), 12359-12360. doi:10.1021/ja982365d

Zhang, S.-W., & Swager, T. M. (2003). Fluorescent Detection of Chemical Warfare Agents:  Functional Group Specific Ratiometric Chemosensors. Journal of the American Chemical Society, 125(12), 3420-3421. doi:10.1021/ja029265z

Dale, T. J., & Rebek, J. (2006). Fluorescent Sensors for Organophosphorus Nerve Agent Mimics. Journal of the American Chemical Society, 128(14), 4500-4501. doi:10.1021/ja057449i

Ilhan, F., Tyson, D. S., & Meador, M. A. (2004). Synthesis and Chemosensory Behavior of Anthracene Bisimide Derivatives. Chemistry of Materials, 16(16), 2978-2980. doi:10.1021/cm049508h

Bencic-Nagale, S., Sternfeld, T., & Walt, D. R. (2006). Microbead Chemical Switches:  An Approach to Detection of Reactive Organophosphate Chemical Warfare Agent Vapors. Journal of the American Chemical Society, 128(15), 5041-5048. doi:10.1021/ja057057b

Shunmugam, R., & Tew, G. N. (2008). Terpyridine–Lanthanide Complexes Respond to Fluorophosphate Containing Nerve Gas G-Agent Surrogates. Chemistry - A European Journal, 14(18), 5409-5412. doi:10.1002/chem.200800461

Kang, S., Kim, S., Yang, Y.-K., Bae, S., & Tae, J. (2009). Fluorescent and colorimetric detection of acid vapors by using solid-supported rhodamine hydrazides. Tetrahedron Letters, 50(17), 2010-2012. doi:10.1016/j.tetlet.2009.02.087

Wallace, K. J., Morey, J., Lynch, V. M., & Anslyn, E. V. (2005). Colorimetric detection of chemical warfare simulants. New Journal of Chemistry, 29(11), 1469. doi:10.1039/b506100h

Wallace, K. J., Fagbemi, R. I., Folmer-Andersen, F. J., Morey, J., Lynth, V. M., & Anslyn, E. V. (2006). Detection of chemical warfare simulants by phosphorylation of a coumarin oximate. Chemical Communications, (37), 3886. doi:10.1039/b609861d

Terrier, F., Rodriguez-Dafonte, P., Le Guével, E., & Moutiers, G. (2006). Revisiting the reactivity of oximate α-nucleophiles with electrophilic phosphorus centers. Relevance to detoxification of sarin, soman and DFP under mild conditions. Org. Biomol. Chem., 4(23), 4352-4363. doi:10.1039/b609658c

Hewage, H. S., Wallace, K. J., & Anslyn, E. V. (2007). Novel chemiluminescent detection of chemical warfare simulant. Chemical Communications, (38), 3909. doi:10.1039/b706624d

Dale, T. J., & Rebek, J. (2009). Hydroxy Oximes as Organophosphorus Nerve Agent Sensors. Angewandte Chemie, 121(42), 7990-7992. doi:10.1002/ange.200902820

Dale, T. J., & Rebek, J. (2009). Hydroxy Oximes as Organophosphorus Nerve Agent Sensors. Angewandte Chemie International Edition, 48(42), 7850-7852. doi:10.1002/anie.200902820

Knapton, D., Burnworth, M., Rowan, S. J., & Weder, C. (2006). Fluorescent Organometallic Sensors for the Detection of Chemical-Warfare-Agent Mimics. Angewandte Chemie, 118(35), 5957-5961. doi:10.1002/ange.200601634

Knapton, D., Burnworth, M., Rowan, S. J., & Weder, C. (2006). Fluorescent Organometallic Sensors for the Detection of Chemical-Warfare-Agent Mimics. Angewandte Chemie International Edition, 45(35), 5825-5829. doi:10.1002/anie.200601634

Climent, E., Martí, A., Royo, S., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Parra, M. (2010). Chromogenic Detection of Nerve Agent Mimics by Mass Transport Control at the Surface of Bifunctionalized Silica Nanoparticles. Angewandte Chemie, 122(34), 6081-6084. doi:10.1002/ange.201001088

Climent, E., Martí, A., Royo, S., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Parra, M. (2010). Chromogenic Detection of Nerve Agent Mimics by Mass Transport Control at the Surface of Bifunctionalized Silica Nanoparticles. Angewandte Chemie International Edition, 49(34), 5945-5948. doi:10.1002/anie.201001088

Costero, A. M., Gil, S., Parra, M., Mancini, P. M. E., Martínez-Máñez, R., Sancenón, F., & Royo, S. (2008). Chromogenic detection of nerve agent mimics. Chemical Communications, (45), 6002. doi:10.1039/b811247a

Li, H., Zhou, D., Huang, C., Xu, J., Li, T., Zhao, X., & Xia, X. (1996). Langmuir–Blodgett film and second harmonic generation of a new type of amphiphilic non-linear optical bis-chromophore complex dye. J. Chem. Soc., Faraday Trans., 92(14), 2585-2592. doi:10.1039/ft9969202585

Peor, N., Sfez, R., & Yitzchaik, S. (2008). Variable Density Effect of Self-Assembled Polarizable Monolayers on the Electronic Properties of Silicon. Journal of the American Chemical Society, 130(12), 4158-4165. doi:10.1021/ja077933g

Li, H., Huang, C., Zhou, Y., Zhao, X., Xia, X., Li, T., & Bai, J. (1995). Synthesis, characterization, Langmuir–Blodgett film deposition and non-linear optical properties of a series of new non-linear optical materials based on azo dyes containing europium complex anions. J. Mater. Chem., 5(11), 1871-1878. doi:10.1039/jm9950501871

Guha, A. K., Lee, H. W., & Lee, I. (2000). Pyridinolysis of Phenyl-Substituted Phenyl Chlorophosphates in Acetonitrile. The Journal of Organic Chemistry, 65(1), 12-15. doi:10.1021/jo990671j

Bourne, N., & Williams, A. (1984). Evidence for a single transition state in the transfer of the phosphoryl group (-PO32-) to nitrogen nucleophiles from pyridinio-N-phosphonates. Journal of the American Chemical Society, 106(24), 7591-7596. doi:10.1021/ja00336a046

Pipko, S. E., Bezgubenko, L. V., Sinitsa, A. D., Rusanov, E. B., Kapustin, E. G., Povolotskii, M. I., & Shvadchak, V. V. (2008). Synthesis and structure of complexes of phosphorus pentachloride with 4-dimethylaminopyridine andn-methylimidazole. Heteroatom Chemistry, 19(2), 171-177. doi:10.1002/hc.20392

Jameson, G. W., & Lawlor, J. M. (1970). Aminolysis of N-phosphorylated pyridines. Journal of the Chemical Society B: Physical Organic, 53. doi:10.1039/j29700000053

Klotz, I. M., Fiess, H. A., Chen Ho, J. Y., & Mellody, M. (1954). The Position of the Proton in Substituted Azobenzene Molecules. Journal of the American Chemical Society, 76(20), 5136-5140. doi:10.1021/ja01649a041

Kubota, H., Idei, M., & Motomizu, S. (1990). Liquid-liquid distribution of ion associates of anions with 4-[4-alkyl(aryl)aminophenylazo]pyridines and their use as spectrophotometric reagents for anionic surfactants. The Analyst, 115(8), 1109. doi:10.1039/an9901501109

Ábalos, T., Royo, S., Martínez-Máñez, R., Sancenón, F., Soto, J., Costero, A. M., … Parra, M. (2009). Surfactant-assisted chromogenic sensing of cyanide in water. New Journal of Chemistry, 33(8), 1641. doi:10.1039/b909705h

Margraf, G., Pattacini, R., Messaoudi, A., & Braunstein, P. (2006). Intra- and inter-molecular phosphoryl migration in phosphinothiazolines; precursors to polynuclear complexes and bimetallic coordination polymers. Chemical Communications, (29), 3098. doi:10.1039/b603495k

Pattacini, R., Margraf, G., Messaoudi, A., Oberbeckmann-Winter, N., & Braunstein, P. (2008). Formation of P−C Bonds under Unexpectedly Mild Conditions. Phosphoryl Migration and Metal Coordination of Diphenylphosphinomethyl-oxazolines and -thiazolines. Inorganic Chemistry, 47(21), 9886-9897. doi:10.1021/ic800934h

Vijayakumar, C. T., Jayaprakash, D., & Nanjan, M. J. (2007). Synthesis and Pyrolysis-Field Ionization Mass Spectrometric Study of an Aromatic Polyamide Having Azo Group in the Main Chain. Polymer-Plastics Technology and Engineering, 46(12), 1187-1194. doi:10.1080/03602550701575839

Gu, Z., Ma, J., Zhao, X., Wu, J., & Zhang, D. (2006). Reduction of nitriles to amines in positive ion electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 20(19), 2969-2972. doi:10.1002/rcm.2690

Nilsson, J., Kraszewski, A., & Stawinski, J. (2001). Reinvestigation of the 31P NMR evidence for the formation of diorganyl phosphoropyridinium intermediates. Journal of the Chemical Society, Perkin Transactions 2, (12), 2263-2266. doi:10.1039/b107792a

Rohrbaugh, D. K., & Sarver, E. W. (1998). Detection of alkyl methylphosphonic acids in complex matrices by gas chromatography–tandem mass spectrometry. Journal of Chromatography A, 809(1-2), 141-150. doi:10.1016/s0021-9673(98)00184-8

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem