- -

Chromogenic, specific detection of the nerve-agent mimic DCNP (a Tabun mimic)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Chromogenic, specific detection of the nerve-agent mimic DCNP (a Tabun mimic)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Royo Calvo, Santiago es_ES
dc.contributor.author Costero Nieto, Ana María es_ES
dc.contributor.author Parra Álvarez, Margarita es_ES
dc.contributor.author Gil Grau, Salvador es_ES
dc.contributor.author Martínez Mañez, Ramón es_ES
dc.contributor.author Sancenón Galarza, Félix
dc.date.accessioned 2013-11-11T10:00:23Z
dc.date.issued 2011-06-14
dc.identifier.issn 0947-6539
dc.identifier.uri http://hdl.handle.net/10251/33406
dc.description.abstract Nerve-gas detection: An azo dye with pyridine and aniline moieties can selectively detect diethylcyanophosphonate (DCNP) from diisopropylfluorophosphate (DFP) and diethylchlorophosphate (DCP) by colour changes. Upon addition of DFP and DCP a phosphorylation in the pyridine occurs with a colour change from orange to magenta, whereas addition of DCNP phosphorylated the aniline ring with a colour change from orange to yellow (see figure). es_ES
dc.description.sponsorship We thank the Spanish Government (projects MAT2009-14564-C04) and the Regional Valencian Government (Generalitat Valencia; project PROMETEO/2009/016 and ACOMP07/080) for support. S.R. is grateful to the Generalitat Valenciana for the fellowship awarded. SCSIE (Universidad de Valencia) is gratefully acknowledged for all the equipment employed. en_EN
dc.format.extent 4 es_ES
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Chromogenic detection es_ES
dc.subject Diisopropylfluorophosphate es_ES
dc.subject Molecular recognition es_ES
dc.subject Nerve agents es_ES
dc.subject Sensors es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Chromogenic, specific detection of the nerve-agent mimic DCNP (a Tabun mimic) es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/chem.201100602
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-14564-C04/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//ACOMP07%2F2009%2F080/ES/Desarrollo de quimiosensores en solución para especies de pequeño tamaño con interés biológico/ / es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Royo Calvo, S.; Costero Nieto, AM.; Parra Álvarez, M.; Gil Grau, S.; Martínez Mañez, R.; Sancenón Galarza, F. (2011). Chromogenic, specific detection of the nerve-agent mimic DCNP (a Tabun mimic). Chemistry - A European Journal. 17:6931-6934. https://doi.org/10.1002/chem.201100602 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/chem.201100602 es_ES
dc.description.upvformatpinicio 6931 es_ES
dc.description.upvformatpfin 6934 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.relation.senia 206707
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Gooding, J. J. (2006). Biosensor technology for detecting biological warfare agents: Recent progress and future trends. Analytica Chimica Acta, 559(2), 137-151. doi:10.1016/j.aca.2005.12.020 es_ES
dc.description.references Eubanks, L. M., Dickerson, T. J., & Janda, K. D. (2007). Technological advancements for the detection of and protection against biological and chemical warfare agents. Chemical Society Reviews, 36(3), 458. doi:10.1039/b615227a es_ES
dc.description.references Smith, B. M. (2008). Catalytic methods for the destruction of chemical warfare agents under ambient conditions. Chem. Soc. Rev., 37(3), 470-478. doi:10.1039/b705025a es_ES
dc.description.references Wheelis, M. (2002). Biotechnology and chemical weapons control. Pure and Applied Chemistry, 74(12), 2247-2251. doi:10.1351/pac200274122247 es_ES
dc.description.references Hill, H. H., & Martin, S. J. (2002). Conventional analytical methods for chemical warfare agents. Pure and Applied Chemistry, 74(12), 2281-2291. doi:10.1351/pac200274122281 es_ES
dc.description.references McBride, M. T., Gammon, S., Pitesky, M., O’Brien, T. W., Smith, T., Aldrich, J., … Venkateswaran, K. S. (2003). Multiplexed Liquid Arrays for Simultaneous Detection of Simulants of Biological Warfare Agents. Analytical Chemistry, 75(8), 1924-1930. doi:10.1021/ac026379k es_ES
dc.description.references Russell, A. J., Berberich, J. A., Drevon, G. F., & Koepsel, R. R. (2003). Biomaterials for Mediation of Chemical and Biological Warfare Agents. Annual Review of Biomedical Engineering, 5(1), 1-27. doi:10.1146/annurev.bioeng.5.121202.125602 es_ES
dc.description.references Wang, H., Wang, J., Choi, D., Tang, Z., Wu, H., & Lin, Y. (2009). EQCM immunoassay for phosphorylated acetylcholinesterase as a biomarker for organophosphate exposures based on selective zirconia adsorption and enzyme-catalytic precipitation. Biosensors and Bioelectronics, 24(8), 2377-2383. doi:10.1016/j.bios.2008.12.013 es_ES
dc.description.references Mulchandani, A., Kaneva, I., & Chen, W. (1998). Biosensor for Direct Determination of Organophosphate Nerve Agents Using RecombinantEscherichia coliwith Surface-Expressed Organophosphorus Hydrolase. 2. Fiber-Optic Microbial Biosensor. Analytical Chemistry, 70(23), 5042-5046. doi:10.1021/ac980643l es_ES
dc.description.references Mulchandani, A., Mulchandani, P., Kaneva, I., & Chen, W. (1998). Biosensor for Direct Determination of Organophosphate Nerve Agents Using RecombinantEscherichia coliwith Surface-Expressed Organophosphorus Hydrolase. 1. Potentiometric Microbial Electrode. Analytical Chemistry, 70(19), 4140-4145. doi:10.1021/ac9805201 es_ES
dc.description.references Steiner, W. E., Klopsch, S. J., English, W. A., Clowers, B. H., & Hill, H. H. (2005). Detection of a Chemical Warfare Agent Simulant in Various Aerosol Matrixes by Ion Mobility Time-of-Flight Mass Spectrometry. Analytical Chemistry, 77(15), 4792-4799. doi:10.1021/ac050278f es_ES
dc.description.references Khan, M. A. K., Long, Y.-T., Schatte, G., & Kraatz, H.-B. (2007). Surface Studies of Aminoferrocene Derivatives on Gold:  Electrochemical Sensors for Chemical Warfare Agents. Analytical Chemistry, 79(7), 2877-2884. doi:10.1021/ac061981m es_ES
dc.description.references Shulga, O. V., & Palmer, C. (2006). Detection of V-type nerve agent degradation products at electrodes modified by PPy/PQQ using CaCl2 as supporting electrolyte. Analytical and Bioanalytical Chemistry, 385(6), 1116-1123. doi:10.1007/s00216-006-0531-1 es_ES
dc.description.references Chen, J.-C., Shih, J.-L., Liu, C.-H., Kuo, M.-Y., & Zen, J.-M. (2006). Disposable Electrochemical Sensor for Determination of Nitroaromatic Compounds by a Single-Run Approach. Analytical Chemistry, 78(11), 3752-3757. doi:10.1021/ac060002n es_ES
dc.description.references Liu, G., & Lin, Y. (2006). Biosensor Based on Self-Assembling Acetylcholinesterase on Carbon Nanotubes for Flow Injection/Amperometric Detection of Organophosphate Pesticides and Nerve Agents. Analytical Chemistry, 78(3), 835-843. doi:10.1021/ac051559q es_ES
dc.description.references Joshi, K. A., Prouza, M., Kum, M., Wang, J., Tang, J., Haddon, R., … Mulchandani, A. (2006). V-Type Nerve Agent Detection Using a Carbon Nanotube-Based Amperometric Enzyme Electrode. Analytical Chemistry, 78(1), 331-336. doi:10.1021/ac051052f es_ES
dc.description.references Liu, G., & Lin, Y. (2005). Electrochemical Sensor for Organophosphate Pesticides and Nerve Agents Using Zirconia Nanoparticles as Selective Sorbents. Analytical Chemistry, 77(18), 5894-5901. doi:10.1021/ac050791t es_ES
dc.description.references Wang, J., Chen, L., Mulchandani, A., Mulchandani, P., & Chen, W. (1999). Remote Biosensor for In-Situ MOnitoring of Organophosphate Nerve Agents. Electroanalysis, 11(12), 866-869. doi:10.1002/(sici)1521-4109(199908)11:12<866::aid-elan866>3.0.co;2-1 es_ES
dc.description.references Zuo, G., Li, X., Li, P., Yang, T., Wang, Y., Cheng, Z., & Feng, S. (2006). Detection of trace organophosphorus vapor with a self-assembled bilayer functionalized SiO2 microcantilever piezoresistive sensor. Analytica Chimica Acta, 580(2), 123-127. doi:10.1016/j.aca.2006.07.071 es_ES
dc.description.references Karnati, C., Du, H., Ji, H.-F., Xu, X., Lvov, Y., Mulchandani, A., … Chen, W. (2007). Organophosphorus hydrolase multilayer modified microcantilevers for organophosphorus detection. Biosensors and Bioelectronics, 22(11), 2636-2642. doi:10.1016/j.bios.2006.10.027 es_ES
dc.description.references Zhao, Q., Zhu, Q., Shih, W. Y., & Shih, W.-H. (2006). Array adsorbent-coated lead zirconate titanate (PZT)/stainless steel cantilevers for dimethyl methylphosphonate (DMMP) detection. Sensors and Actuators B: Chemical, 117(1), 74-79. doi:10.1016/j.snb.2005.10.048 es_ES
dc.description.references He, W., Liu, Z., Du, X., Jiang, Y., & Xiao, D. (2008). Analytical application of poly{methyl[3-(2-hydroxy-3,4-difluoro)phenyl]propyl siloxane} as a QCM coating for DMMP detection. Talanta, 76(3), 698-702. doi:10.1016/j.talanta.2008.04.022 es_ES
dc.description.references Walker, J. P., Kimble, K. W., & Asher, S. A. (2007). Photonic crystal sensor for organophosphate nerve agents utilizing the organophosphorus hydrolase enzyme. Analytical and Bioanalytical Chemistry, 389(7-8), 2115-2124. doi:10.1007/s00216-007-1599-y es_ES
dc.description.references Walker, J. P., & Asher, S. A. (2005). Acetylcholinesterase-Based Organophosphate Nerve Agent Sensing Photonic Crystal. Analytical Chemistry, 77(6), 1596-1600. doi:10.1021/ac048562e es_ES
dc.description.references Aernecke, M. J., & Walt, D. R. (2009). Optical-fiber arrays for vapor sensing. Sensors and Actuators B: Chemical, 142(2), 464-469. doi:10.1016/j.snb.2009.06.054 es_ES
dc.description.references Burnworth, M., Rowan, S. J., & Weder, C. (2007). Fluorescent Sensors for the Detection of Chemical Warfare Agents. Chemistry - A European Journal, 13(28), 7828-7836. doi:10.1002/chem.200700720 es_ES
dc.description.references Thomas, S. W., Joly, G. D., & Swager, T. M. (2007). Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chemical Reviews, 107(4), 1339-1386. doi:10.1021/cr0501339 es_ES
dc.description.references Royo, S., Martínez-Máñez, R., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2007). Chromogenic and fluorogenic reagents for chemical warfare nerve agents’ detection. Chemical Communications, (46), 4839. doi:10.1039/b707063b es_ES
dc.description.references Giordano, B., & Collins, G. (2007). Synthetic Methods Applied to the Detection of Chemical Warfare Nerve Agents. Current Organic Chemistry, 11(3), 255-265. doi:10.2174/138527207779940883 es_ES
dc.description.references Mohr, G. J. (2006). New chromogenic and fluorogenic reagents and sensors for neutral and ionic analytes based on covalent bond formation–a review of recent developments. Analytical and Bioanalytical Chemistry, 386(5), 1201-1214. doi:10.1007/s00216-006-0647-3 es_ES
dc.description.references Van Houten, K. A., Heath, D. C., & Pilato, R. S. (1998). Rapid Luminescent Detection of Phosphate Esters in Solution and the Gas Phase Using (dppe)Pt{S2C2(2-pyridyl)(CH2CH2OH)}. Journal of the American Chemical Society, 120(47), 12359-12360. doi:10.1021/ja982365d es_ES
dc.description.references Zhang, S.-W., & Swager, T. M. (2003). Fluorescent Detection of Chemical Warfare Agents:  Functional Group Specific Ratiometric Chemosensors. Journal of the American Chemical Society, 125(12), 3420-3421. doi:10.1021/ja029265z es_ES
dc.description.references Dale, T. J., & Rebek, J. (2006). Fluorescent Sensors for Organophosphorus Nerve Agent Mimics. Journal of the American Chemical Society, 128(14), 4500-4501. doi:10.1021/ja057449i es_ES
dc.description.references Ilhan, F., Tyson, D. S., & Meador, M. A. (2004). Synthesis and Chemosensory Behavior of Anthracene Bisimide Derivatives. Chemistry of Materials, 16(16), 2978-2980. doi:10.1021/cm049508h es_ES
dc.description.references Bencic-Nagale, S., Sternfeld, T., & Walt, D. R. (2006). Microbead Chemical Switches:  An Approach to Detection of Reactive Organophosphate Chemical Warfare Agent Vapors. Journal of the American Chemical Society, 128(15), 5041-5048. doi:10.1021/ja057057b es_ES
dc.description.references Shunmugam, R., & Tew, G. N. (2008). Terpyridine–Lanthanide Complexes Respond to Fluorophosphate Containing Nerve Gas G-Agent Surrogates. Chemistry - A European Journal, 14(18), 5409-5412. doi:10.1002/chem.200800461 es_ES
dc.description.references Kang, S., Kim, S., Yang, Y.-K., Bae, S., & Tae, J. (2009). Fluorescent and colorimetric detection of acid vapors by using solid-supported rhodamine hydrazides. Tetrahedron Letters, 50(17), 2010-2012. doi:10.1016/j.tetlet.2009.02.087 es_ES
dc.description.references Wallace, K. J., Morey, J., Lynch, V. M., & Anslyn, E. V. (2005). Colorimetric detection of chemical warfare simulants. New Journal of Chemistry, 29(11), 1469. doi:10.1039/b506100h es_ES
dc.description.references Wallace, K. J., Fagbemi, R. I., Folmer-Andersen, F. J., Morey, J., Lynth, V. M., & Anslyn, E. V. (2006). Detection of chemical warfare simulants by phosphorylation of a coumarin oximate. Chemical Communications, (37), 3886. doi:10.1039/b609861d es_ES
dc.description.references Terrier, F., Rodriguez-Dafonte, P., Le Guével, E., & Moutiers, G. (2006). Revisiting the reactivity of oximate α-nucleophiles with electrophilic phosphorus centers. Relevance to detoxification of sarin, soman and DFP under mild conditions. Org. Biomol. Chem., 4(23), 4352-4363. doi:10.1039/b609658c es_ES
dc.description.references Hewage, H. S., Wallace, K. J., & Anslyn, E. V. (2007). Novel chemiluminescent detection of chemical warfare simulant. Chemical Communications, (38), 3909. doi:10.1039/b706624d es_ES
dc.description.references Dale, T. J., & Rebek, J. (2009). Hydroxy Oximes as Organophosphorus Nerve Agent Sensors. Angewandte Chemie, 121(42), 7990-7992. doi:10.1002/ange.200902820 es_ES
dc.description.references Dale, T. J., & Rebek, J. (2009). Hydroxy Oximes as Organophosphorus Nerve Agent Sensors. Angewandte Chemie International Edition, 48(42), 7850-7852. doi:10.1002/anie.200902820 es_ES
dc.description.references Knapton, D., Burnworth, M., Rowan, S. J., & Weder, C. (2006). Fluorescent Organometallic Sensors for the Detection of Chemical-Warfare-Agent Mimics. Angewandte Chemie, 118(35), 5957-5961. doi:10.1002/ange.200601634 es_ES
dc.description.references Knapton, D., Burnworth, M., Rowan, S. J., & Weder, C. (2006). Fluorescent Organometallic Sensors for the Detection of Chemical-Warfare-Agent Mimics. Angewandte Chemie International Edition, 45(35), 5825-5829. doi:10.1002/anie.200601634 es_ES
dc.description.references Climent, E., Martí, A., Royo, S., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Parra, M. (2010). Chromogenic Detection of Nerve Agent Mimics by Mass Transport Control at the Surface of Bifunctionalized Silica Nanoparticles. Angewandte Chemie, 122(34), 6081-6084. doi:10.1002/ange.201001088 es_ES
dc.description.references Climent, E., Martí, A., Royo, S., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Parra, M. (2010). Chromogenic Detection of Nerve Agent Mimics by Mass Transport Control at the Surface of Bifunctionalized Silica Nanoparticles. Angewandte Chemie International Edition, 49(34), 5945-5948. doi:10.1002/anie.201001088 es_ES
dc.description.references Costero, A. M., Gil, S., Parra, M., Mancini, P. M. E., Martínez-Máñez, R., Sancenón, F., & Royo, S. (2008). Chromogenic detection of nerve agent mimics. Chemical Communications, (45), 6002. doi:10.1039/b811247a es_ES
dc.description.references Li, H., Zhou, D., Huang, C., Xu, J., Li, T., Zhao, X., & Xia, X. (1996). Langmuir–Blodgett film and second harmonic generation of a new type of amphiphilic non-linear optical bis-chromophore complex dye. J. Chem. Soc., Faraday Trans., 92(14), 2585-2592. doi:10.1039/ft9969202585 es_ES
dc.description.references Peor, N., Sfez, R., & Yitzchaik, S. (2008). Variable Density Effect of Self-Assembled Polarizable Monolayers on the Electronic Properties of Silicon. Journal of the American Chemical Society, 130(12), 4158-4165. doi:10.1021/ja077933g es_ES
dc.description.references Li, H., Huang, C., Zhou, Y., Zhao, X., Xia, X., Li, T., & Bai, J. (1995). Synthesis, characterization, Langmuir–Blodgett film deposition and non-linear optical properties of a series of new non-linear optical materials based on azo dyes containing europium complex anions. J. Mater. Chem., 5(11), 1871-1878. doi:10.1039/jm9950501871 es_ES
dc.description.references Guha, A. K., Lee, H. W., & Lee, I. (2000). Pyridinolysis of Phenyl-Substituted Phenyl Chlorophosphates in Acetonitrile. The Journal of Organic Chemistry, 65(1), 12-15. doi:10.1021/jo990671j es_ES
dc.description.references Bourne, N., & Williams, A. (1984). Evidence for a single transition state in the transfer of the phosphoryl group (-PO32-) to nitrogen nucleophiles from pyridinio-N-phosphonates. Journal of the American Chemical Society, 106(24), 7591-7596. doi:10.1021/ja00336a046 es_ES
dc.description.references Pipko, S. E., Bezgubenko, L. V., Sinitsa, A. D., Rusanov, E. B., Kapustin, E. G., Povolotskii, M. I., & Shvadchak, V. V. (2008). Synthesis and structure of complexes of phosphorus pentachloride with 4-dimethylaminopyridine andn-methylimidazole. Heteroatom Chemistry, 19(2), 171-177. doi:10.1002/hc.20392 es_ES
dc.description.references Jameson, G. W., & Lawlor, J. M. (1970). Aminolysis of N-phosphorylated pyridines. Journal of the Chemical Society B: Physical Organic, 53. doi:10.1039/j29700000053 es_ES
dc.description.references Klotz, I. M., Fiess, H. A., Chen Ho, J. Y., & Mellody, M. (1954). The Position of the Proton in Substituted Azobenzene Molecules. Journal of the American Chemical Society, 76(20), 5136-5140. doi:10.1021/ja01649a041 es_ES
dc.description.references Kubota, H., Idei, M., & Motomizu, S. (1990). Liquid-liquid distribution of ion associates of anions with 4-[4-alkyl(aryl)aminophenylazo]pyridines and their use as spectrophotometric reagents for anionic surfactants. The Analyst, 115(8), 1109. doi:10.1039/an9901501109 es_ES
dc.description.references Ábalos, T., Royo, S., Martínez-Máñez, R., Sancenón, F., Soto, J., Costero, A. M., … Parra, M. (2009). Surfactant-assisted chromogenic sensing of cyanide in water. New Journal of Chemistry, 33(8), 1641. doi:10.1039/b909705h es_ES
dc.description.references Margraf, G., Pattacini, R., Messaoudi, A., & Braunstein, P. (2006). Intra- and inter-molecular phosphoryl migration in phosphinothiazolines; precursors to polynuclear complexes and bimetallic coordination polymers. Chemical Communications, (29), 3098. doi:10.1039/b603495k es_ES
dc.description.references Pattacini, R., Margraf, G., Messaoudi, A., Oberbeckmann-Winter, N., & Braunstein, P. (2008). Formation of P−C Bonds under Unexpectedly Mild Conditions. Phosphoryl Migration and Metal Coordination of Diphenylphosphinomethyl-oxazolines and -thiazolines. Inorganic Chemistry, 47(21), 9886-9897. doi:10.1021/ic800934h es_ES
dc.description.references Vijayakumar, C. T., Jayaprakash, D., & Nanjan, M. J. (2007). Synthesis and Pyrolysis-Field Ionization Mass Spectrometric Study of an Aromatic Polyamide Having Azo Group in the Main Chain. Polymer-Plastics Technology and Engineering, 46(12), 1187-1194. doi:10.1080/03602550701575839 es_ES
dc.description.references Gu, Z., Ma, J., Zhao, X., Wu, J., & Zhang, D. (2006). Reduction of nitriles to amines in positive ion electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 20(19), 2969-2972. doi:10.1002/rcm.2690 es_ES
dc.description.references Nilsson, J., Kraszewski, A., & Stawinski, J. (2001). Reinvestigation of the 31P NMR evidence for the formation of diorganyl phosphoropyridinium intermediates. Journal of the Chemical Society, Perkin Transactions 2, (12), 2263-2266. doi:10.1039/b107792a es_ES
dc.description.references Rohrbaugh, D. K., & Sarver, E. W. (1998). Detection of alkyl methylphosphonic acids in complex matrices by gas chromatography–tandem mass spectrometry. Journal of Chromatography A, 809(1-2), 141-150. doi:10.1016/s0021-9673(98)00184-8 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem