Mostrar el registro sencillo del ítem
dc.contributor.author | Royo Calvo, Santiago | es_ES |
dc.contributor.author | Costero Nieto, Ana María | es_ES |
dc.contributor.author | Parra Álvarez, Margarita | es_ES |
dc.contributor.author | Gil Grau, Salvador | es_ES |
dc.contributor.author | Martínez Mañez, Ramón | es_ES |
dc.contributor.author | Sancenón Galarza, Félix | |
dc.date.accessioned | 2013-11-11T10:00:23Z | |
dc.date.issued | 2011-06-14 | |
dc.identifier.issn | 0947-6539 | |
dc.identifier.uri | http://hdl.handle.net/10251/33406 | |
dc.description.abstract | Nerve-gas detection: An azo dye with pyridine and aniline moieties can selectively detect diethylcyanophosphonate (DCNP) from diisopropylfluorophosphate (DFP) and diethylchlorophosphate (DCP) by colour changes. Upon addition of DFP and DCP a phosphorylation in the pyridine occurs with a colour change from orange to magenta, whereas addition of DCNP phosphorylated the aniline ring with a colour change from orange to yellow (see figure). | es_ES |
dc.description.sponsorship | We thank the Spanish Government (projects MAT2009-14564-C04) and the Regional Valencian Government (Generalitat Valencia; project PROMETEO/2009/016 and ACOMP07/080) for support. S.R. is grateful to the Generalitat Valenciana for the fellowship awarded. SCSIE (Universidad de Valencia) is gratefully acknowledged for all the equipment employed. | en_EN |
dc.format.extent | 4 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation.ispartof | Chemistry - A European Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Chromogenic detection | es_ES |
dc.subject | Diisopropylfluorophosphate | es_ES |
dc.subject | Molecular recognition | es_ES |
dc.subject | Nerve agents | es_ES |
dc.subject | Sensors | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Chromogenic, specific detection of the nerve-agent mimic DCNP (a Tabun mimic) | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/chem.201100602 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2009-14564-C04/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat Valenciana//ACOMP07%2F2009%2F080/ES/Desarrollo de quimiosensores en solución para especies de pequeño tamaño con interés biológico/ / | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Royo Calvo, S.; Costero Nieto, AM.; Parra Álvarez, M.; Gil Grau, S.; Martínez Mañez, R.; Sancenón Galarza, F. (2011). Chromogenic, specific detection of the nerve-agent mimic DCNP (a Tabun mimic). Chemistry - A European Journal. 17:6931-6934. https://doi.org/10.1002/chem.201100602 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/chem.201100602 | es_ES |
dc.description.upvformatpinicio | 6931 | es_ES |
dc.description.upvformatpfin | 6934 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.relation.senia | 206707 | |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Gooding, J. J. (2006). Biosensor technology for detecting biological warfare agents: Recent progress and future trends. Analytica Chimica Acta, 559(2), 137-151. doi:10.1016/j.aca.2005.12.020 | es_ES |
dc.description.references | Eubanks, L. M., Dickerson, T. J., & Janda, K. D. (2007). Technological advancements for the detection of and protection against biological and chemical warfare agents. Chemical Society Reviews, 36(3), 458. doi:10.1039/b615227a | es_ES |
dc.description.references | Smith, B. M. (2008). Catalytic methods for the destruction of chemical warfare agents under ambient conditions. Chem. Soc. Rev., 37(3), 470-478. doi:10.1039/b705025a | es_ES |
dc.description.references | Wheelis, M. (2002). Biotechnology and chemical weapons control. Pure and Applied Chemistry, 74(12), 2247-2251. doi:10.1351/pac200274122247 | es_ES |
dc.description.references | Hill, H. H., & Martin, S. J. (2002). Conventional analytical methods for chemical warfare agents. Pure and Applied Chemistry, 74(12), 2281-2291. doi:10.1351/pac200274122281 | es_ES |
dc.description.references | McBride, M. T., Gammon, S., Pitesky, M., O’Brien, T. W., Smith, T., Aldrich, J., … Venkateswaran, K. S. (2003). Multiplexed Liquid Arrays for Simultaneous Detection of Simulants of Biological Warfare Agents. Analytical Chemistry, 75(8), 1924-1930. doi:10.1021/ac026379k | es_ES |
dc.description.references | Russell, A. J., Berberich, J. A., Drevon, G. F., & Koepsel, R. R. (2003). Biomaterials for Mediation of Chemical and Biological Warfare Agents. Annual Review of Biomedical Engineering, 5(1), 1-27. doi:10.1146/annurev.bioeng.5.121202.125602 | es_ES |
dc.description.references | Wang, H., Wang, J., Choi, D., Tang, Z., Wu, H., & Lin, Y. (2009). EQCM immunoassay for phosphorylated acetylcholinesterase as a biomarker for organophosphate exposures based on selective zirconia adsorption and enzyme-catalytic precipitation. Biosensors and Bioelectronics, 24(8), 2377-2383. doi:10.1016/j.bios.2008.12.013 | es_ES |
dc.description.references | Mulchandani, A., Kaneva, I., & Chen, W. (1998). Biosensor for Direct Determination of Organophosphate Nerve Agents Using RecombinantEscherichia coliwith Surface-Expressed Organophosphorus Hydrolase. 2. Fiber-Optic Microbial Biosensor. Analytical Chemistry, 70(23), 5042-5046. doi:10.1021/ac980643l | es_ES |
dc.description.references | Mulchandani, A., Mulchandani, P., Kaneva, I., & Chen, W. (1998). Biosensor for Direct Determination of Organophosphate Nerve Agents Using RecombinantEscherichia coliwith Surface-Expressed Organophosphorus Hydrolase. 1. Potentiometric Microbial Electrode. Analytical Chemistry, 70(19), 4140-4145. doi:10.1021/ac9805201 | es_ES |
dc.description.references | Steiner, W. E., Klopsch, S. J., English, W. A., Clowers, B. H., & Hill, H. H. (2005). Detection of a Chemical Warfare Agent Simulant in Various Aerosol Matrixes by Ion Mobility Time-of-Flight Mass Spectrometry. Analytical Chemistry, 77(15), 4792-4799. doi:10.1021/ac050278f | es_ES |
dc.description.references | Khan, M. A. K., Long, Y.-T., Schatte, G., & Kraatz, H.-B. (2007). Surface Studies of Aminoferrocene Derivatives on Gold: Electrochemical Sensors for Chemical Warfare Agents. Analytical Chemistry, 79(7), 2877-2884. doi:10.1021/ac061981m | es_ES |
dc.description.references | Shulga, O. V., & Palmer, C. (2006). Detection of V-type nerve agent degradation products at electrodes modified by PPy/PQQ using CaCl2 as supporting electrolyte. Analytical and Bioanalytical Chemistry, 385(6), 1116-1123. doi:10.1007/s00216-006-0531-1 | es_ES |
dc.description.references | Chen, J.-C., Shih, J.-L., Liu, C.-H., Kuo, M.-Y., & Zen, J.-M. (2006). Disposable Electrochemical Sensor for Determination of Nitroaromatic Compounds by a Single-Run Approach. Analytical Chemistry, 78(11), 3752-3757. doi:10.1021/ac060002n | es_ES |
dc.description.references | Liu, G., & Lin, Y. (2006). Biosensor Based on Self-Assembling Acetylcholinesterase on Carbon Nanotubes for Flow Injection/Amperometric Detection of Organophosphate Pesticides and Nerve Agents. Analytical Chemistry, 78(3), 835-843. doi:10.1021/ac051559q | es_ES |
dc.description.references | Joshi, K. A., Prouza, M., Kum, M., Wang, J., Tang, J., Haddon, R., … Mulchandani, A. (2006). V-Type Nerve Agent Detection Using a Carbon Nanotube-Based Amperometric Enzyme Electrode. Analytical Chemistry, 78(1), 331-336. doi:10.1021/ac051052f | es_ES |
dc.description.references | Liu, G., & Lin, Y. (2005). Electrochemical Sensor for Organophosphate Pesticides and Nerve Agents Using Zirconia Nanoparticles as Selective Sorbents. Analytical Chemistry, 77(18), 5894-5901. doi:10.1021/ac050791t | es_ES |
dc.description.references | Wang, J., Chen, L., Mulchandani, A., Mulchandani, P., & Chen, W. (1999). Remote Biosensor for In-Situ MOnitoring of Organophosphate Nerve Agents. Electroanalysis, 11(12), 866-869. doi:10.1002/(sici)1521-4109(199908)11:12<866::aid-elan866>3.0.co;2-1 | es_ES |
dc.description.references | Zuo, G., Li, X., Li, P., Yang, T., Wang, Y., Cheng, Z., & Feng, S. (2006). Detection of trace organophosphorus vapor with a self-assembled bilayer functionalized SiO2 microcantilever piezoresistive sensor. Analytica Chimica Acta, 580(2), 123-127. doi:10.1016/j.aca.2006.07.071 | es_ES |
dc.description.references | Karnati, C., Du, H., Ji, H.-F., Xu, X., Lvov, Y., Mulchandani, A., … Chen, W. (2007). Organophosphorus hydrolase multilayer modified microcantilevers for organophosphorus detection. Biosensors and Bioelectronics, 22(11), 2636-2642. doi:10.1016/j.bios.2006.10.027 | es_ES |
dc.description.references | Zhao, Q., Zhu, Q., Shih, W. Y., & Shih, W.-H. (2006). Array adsorbent-coated lead zirconate titanate (PZT)/stainless steel cantilevers for dimethyl methylphosphonate (DMMP) detection. Sensors and Actuators B: Chemical, 117(1), 74-79. doi:10.1016/j.snb.2005.10.048 | es_ES |
dc.description.references | He, W., Liu, Z., Du, X., Jiang, Y., & Xiao, D. (2008). Analytical application of poly{methyl[3-(2-hydroxy-3,4-difluoro)phenyl]propyl siloxane} as a QCM coating for DMMP detection. Talanta, 76(3), 698-702. doi:10.1016/j.talanta.2008.04.022 | es_ES |
dc.description.references | Walker, J. P., Kimble, K. W., & Asher, S. A. (2007). Photonic crystal sensor for organophosphate nerve agents utilizing the organophosphorus hydrolase enzyme. Analytical and Bioanalytical Chemistry, 389(7-8), 2115-2124. doi:10.1007/s00216-007-1599-y | es_ES |
dc.description.references | Walker, J. P., & Asher, S. A. (2005). Acetylcholinesterase-Based Organophosphate Nerve Agent Sensing Photonic Crystal. Analytical Chemistry, 77(6), 1596-1600. doi:10.1021/ac048562e | es_ES |
dc.description.references | Aernecke, M. J., & Walt, D. R. (2009). Optical-fiber arrays for vapor sensing. Sensors and Actuators B: Chemical, 142(2), 464-469. doi:10.1016/j.snb.2009.06.054 | es_ES |
dc.description.references | Burnworth, M., Rowan, S. J., & Weder, C. (2007). Fluorescent Sensors for the Detection of Chemical Warfare Agents. Chemistry - A European Journal, 13(28), 7828-7836. doi:10.1002/chem.200700720 | es_ES |
dc.description.references | Thomas, S. W., Joly, G. D., & Swager, T. M. (2007). Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chemical Reviews, 107(4), 1339-1386. doi:10.1021/cr0501339 | es_ES |
dc.description.references | Royo, S., Martínez-Máñez, R., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2007). Chromogenic and fluorogenic reagents for chemical warfare nerve agents’ detection. Chemical Communications, (46), 4839. doi:10.1039/b707063b | es_ES |
dc.description.references | Giordano, B., & Collins, G. (2007). Synthetic Methods Applied to the Detection of Chemical Warfare Nerve Agents. Current Organic Chemistry, 11(3), 255-265. doi:10.2174/138527207779940883 | es_ES |
dc.description.references | Mohr, G. J. (2006). New chromogenic and fluorogenic reagents and sensors for neutral and ionic analytes based on covalent bond formation–a review of recent developments. Analytical and Bioanalytical Chemistry, 386(5), 1201-1214. doi:10.1007/s00216-006-0647-3 | es_ES |
dc.description.references | Van Houten, K. A., Heath, D. C., & Pilato, R. S. (1998). Rapid Luminescent Detection of Phosphate Esters in Solution and the Gas Phase Using (dppe)Pt{S2C2(2-pyridyl)(CH2CH2OH)}. Journal of the American Chemical Society, 120(47), 12359-12360. doi:10.1021/ja982365d | es_ES |
dc.description.references | Zhang, S.-W., & Swager, T. M. (2003). Fluorescent Detection of Chemical Warfare Agents: Functional Group Specific Ratiometric Chemosensors. Journal of the American Chemical Society, 125(12), 3420-3421. doi:10.1021/ja029265z | es_ES |
dc.description.references | Dale, T. J., & Rebek, J. (2006). Fluorescent Sensors for Organophosphorus Nerve Agent Mimics. Journal of the American Chemical Society, 128(14), 4500-4501. doi:10.1021/ja057449i | es_ES |
dc.description.references | Ilhan, F., Tyson, D. S., & Meador, M. A. (2004). Synthesis and Chemosensory Behavior of Anthracene Bisimide Derivatives. Chemistry of Materials, 16(16), 2978-2980. doi:10.1021/cm049508h | es_ES |
dc.description.references | Bencic-Nagale, S., Sternfeld, T., & Walt, D. R. (2006). Microbead Chemical Switches: An Approach to Detection of Reactive Organophosphate Chemical Warfare Agent Vapors. Journal of the American Chemical Society, 128(15), 5041-5048. doi:10.1021/ja057057b | es_ES |
dc.description.references | Shunmugam, R., & Tew, G. N. (2008). Terpyridine–Lanthanide Complexes Respond to Fluorophosphate Containing Nerve Gas G-Agent Surrogates. Chemistry - A European Journal, 14(18), 5409-5412. doi:10.1002/chem.200800461 | es_ES |
dc.description.references | Kang, S., Kim, S., Yang, Y.-K., Bae, S., & Tae, J. (2009). Fluorescent and colorimetric detection of acid vapors by using solid-supported rhodamine hydrazides. Tetrahedron Letters, 50(17), 2010-2012. doi:10.1016/j.tetlet.2009.02.087 | es_ES |
dc.description.references | Wallace, K. J., Morey, J., Lynch, V. M., & Anslyn, E. V. (2005). Colorimetric detection of chemical warfare simulants. New Journal of Chemistry, 29(11), 1469. doi:10.1039/b506100h | es_ES |
dc.description.references | Wallace, K. J., Fagbemi, R. I., Folmer-Andersen, F. J., Morey, J., Lynth, V. M., & Anslyn, E. V. (2006). Detection of chemical warfare simulants by phosphorylation of a coumarin oximate. Chemical Communications, (37), 3886. doi:10.1039/b609861d | es_ES |
dc.description.references | Terrier, F., Rodriguez-Dafonte, P., Le Guével, E., & Moutiers, G. (2006). Revisiting the reactivity of oximate α-nucleophiles with electrophilic phosphorus centers. Relevance to detoxification of sarin, soman and DFP under mild conditions. Org. Biomol. Chem., 4(23), 4352-4363. doi:10.1039/b609658c | es_ES |
dc.description.references | Hewage, H. S., Wallace, K. J., & Anslyn, E. V. (2007). Novel chemiluminescent detection of chemical warfare simulant. Chemical Communications, (38), 3909. doi:10.1039/b706624d | es_ES |
dc.description.references | Dale, T. J., & Rebek, J. (2009). Hydroxy Oximes as Organophosphorus Nerve Agent Sensors. Angewandte Chemie, 121(42), 7990-7992. doi:10.1002/ange.200902820 | es_ES |
dc.description.references | Dale, T. J., & Rebek, J. (2009). Hydroxy Oximes as Organophosphorus Nerve Agent Sensors. Angewandte Chemie International Edition, 48(42), 7850-7852. doi:10.1002/anie.200902820 | es_ES |
dc.description.references | Knapton, D., Burnworth, M., Rowan, S. J., & Weder, C. (2006). Fluorescent Organometallic Sensors for the Detection of Chemical-Warfare-Agent Mimics. Angewandte Chemie, 118(35), 5957-5961. doi:10.1002/ange.200601634 | es_ES |
dc.description.references | Knapton, D., Burnworth, M., Rowan, S. J., & Weder, C. (2006). Fluorescent Organometallic Sensors for the Detection of Chemical-Warfare-Agent Mimics. Angewandte Chemie International Edition, 45(35), 5825-5829. doi:10.1002/anie.200601634 | es_ES |
dc.description.references | Climent, E., Martí, A., Royo, S., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Parra, M. (2010). Chromogenic Detection of Nerve Agent Mimics by Mass Transport Control at the Surface of Bifunctionalized Silica Nanoparticles. Angewandte Chemie, 122(34), 6081-6084. doi:10.1002/ange.201001088 | es_ES |
dc.description.references | Climent, E., Martí, A., Royo, S., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Parra, M. (2010). Chromogenic Detection of Nerve Agent Mimics by Mass Transport Control at the Surface of Bifunctionalized Silica Nanoparticles. Angewandte Chemie International Edition, 49(34), 5945-5948. doi:10.1002/anie.201001088 | es_ES |
dc.description.references | Costero, A. M., Gil, S., Parra, M., Mancini, P. M. E., Martínez-Máñez, R., Sancenón, F., & Royo, S. (2008). Chromogenic detection of nerve agent mimics. Chemical Communications, (45), 6002. doi:10.1039/b811247a | es_ES |
dc.description.references | Li, H., Zhou, D., Huang, C., Xu, J., Li, T., Zhao, X., & Xia, X. (1996). Langmuir–Blodgett film and second harmonic generation of a new type of amphiphilic non-linear optical bis-chromophore complex dye. J. Chem. Soc., Faraday Trans., 92(14), 2585-2592. doi:10.1039/ft9969202585 | es_ES |
dc.description.references | Peor, N., Sfez, R., & Yitzchaik, S. (2008). Variable Density Effect of Self-Assembled Polarizable Monolayers on the Electronic Properties of Silicon. Journal of the American Chemical Society, 130(12), 4158-4165. doi:10.1021/ja077933g | es_ES |
dc.description.references | Li, H., Huang, C., Zhou, Y., Zhao, X., Xia, X., Li, T., & Bai, J. (1995). Synthesis, characterization, Langmuir–Blodgett film deposition and non-linear optical properties of a series of new non-linear optical materials based on azo dyes containing europium complex anions. J. Mater. Chem., 5(11), 1871-1878. doi:10.1039/jm9950501871 | es_ES |
dc.description.references | Guha, A. K., Lee, H. W., & Lee, I. (2000). Pyridinolysis of Phenyl-Substituted Phenyl Chlorophosphates in Acetonitrile. The Journal of Organic Chemistry, 65(1), 12-15. doi:10.1021/jo990671j | es_ES |
dc.description.references | Bourne, N., & Williams, A. (1984). Evidence for a single transition state in the transfer of the phosphoryl group (-PO32-) to nitrogen nucleophiles from pyridinio-N-phosphonates. Journal of the American Chemical Society, 106(24), 7591-7596. doi:10.1021/ja00336a046 | es_ES |
dc.description.references | Pipko, S. E., Bezgubenko, L. V., Sinitsa, A. D., Rusanov, E. B., Kapustin, E. G., Povolotskii, M. I., & Shvadchak, V. V. (2008). Synthesis and structure of complexes of phosphorus pentachloride with 4-dimethylaminopyridine andn-methylimidazole. Heteroatom Chemistry, 19(2), 171-177. doi:10.1002/hc.20392 | es_ES |
dc.description.references | Jameson, G. W., & Lawlor, J. M. (1970). Aminolysis of N-phosphorylated pyridines. Journal of the Chemical Society B: Physical Organic, 53. doi:10.1039/j29700000053 | es_ES |
dc.description.references | Klotz, I. M., Fiess, H. A., Chen Ho, J. Y., & Mellody, M. (1954). The Position of the Proton in Substituted Azobenzene Molecules. Journal of the American Chemical Society, 76(20), 5136-5140. doi:10.1021/ja01649a041 | es_ES |
dc.description.references | Kubota, H., Idei, M., & Motomizu, S. (1990). Liquid-liquid distribution of ion associates of anions with 4-[4-alkyl(aryl)aminophenylazo]pyridines and their use as spectrophotometric reagents for anionic surfactants. The Analyst, 115(8), 1109. doi:10.1039/an9901501109 | es_ES |
dc.description.references | Ábalos, T., Royo, S., Martínez-Máñez, R., Sancenón, F., Soto, J., Costero, A. M., … Parra, M. (2009). Surfactant-assisted chromogenic sensing of cyanide in water. New Journal of Chemistry, 33(8), 1641. doi:10.1039/b909705h | es_ES |
dc.description.references | Margraf, G., Pattacini, R., Messaoudi, A., & Braunstein, P. (2006). Intra- and inter-molecular phosphoryl migration in phosphinothiazolines; precursors to polynuclear complexes and bimetallic coordination polymers. Chemical Communications, (29), 3098. doi:10.1039/b603495k | es_ES |
dc.description.references | Pattacini, R., Margraf, G., Messaoudi, A., Oberbeckmann-Winter, N., & Braunstein, P. (2008). Formation of P−C Bonds under Unexpectedly Mild Conditions. Phosphoryl Migration and Metal Coordination of Diphenylphosphinomethyl-oxazolines and -thiazolines. Inorganic Chemistry, 47(21), 9886-9897. doi:10.1021/ic800934h | es_ES |
dc.description.references | Vijayakumar, C. T., Jayaprakash, D., & Nanjan, M. J. (2007). Synthesis and Pyrolysis-Field Ionization Mass Spectrometric Study of an Aromatic Polyamide Having Azo Group in the Main Chain. Polymer-Plastics Technology and Engineering, 46(12), 1187-1194. doi:10.1080/03602550701575839 | es_ES |
dc.description.references | Gu, Z., Ma, J., Zhao, X., Wu, J., & Zhang, D. (2006). Reduction of nitriles to amines in positive ion electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 20(19), 2969-2972. doi:10.1002/rcm.2690 | es_ES |
dc.description.references | Nilsson, J., Kraszewski, A., & Stawinski, J. (2001). Reinvestigation of the 31P NMR evidence for the formation of diorganyl phosphoropyridinium intermediates. Journal of the Chemical Society, Perkin Transactions 2, (12), 2263-2266. doi:10.1039/b107792a | es_ES |
dc.description.references | Rohrbaugh, D. K., & Sarver, E. W. (1998). Detection of alkyl methylphosphonic acids in complex matrices by gas chromatography–tandem mass spectrometry. Journal of Chromatography A, 809(1-2), 141-150. doi:10.1016/s0021-9673(98)00184-8 | es_ES |