Mostrar el registro sencillo del ítem
dc.contributor.author | Gotor Candel, Raul Jesús | es_ES |
dc.contributor.author | Costero Nieto, Ana María | es_ES |
dc.contributor.author | Gil Grau, Salvador | es_ES |
dc.contributor.author | Parra Álvarez, Margarita | es_ES |
dc.contributor.author | Martínez Mañez, Ramón | es_ES |
dc.contributor.author | Sancenón Galarza, Félix | |
dc.date.accessioned | 2013-11-11T11:27:55Z | |
dc.date.issued | 2011-10-17 | |
dc.identifier.issn | 0947-6539 | |
dc.identifier.uri | http://hdl.handle.net/10251/33411 | |
dc.description.abstract | Lethal-weapon visualization: A novel triarylmethanol derivative, which is able to colorimetrically distinguish diisopropylfluorophosphate (DFP; a mimic of Sarin and Soman) from other nerve-agent simulants, is reported (see picture). This probe was designed to contain two reactive sites: an OH group that provides a suitable reactive group for nerve agents and a tert-butyldimethylsilylether moiety that is able to react with fluoride, which is a specific byproduct of the phosphorylation of OH by DFP. | es_ES |
dc.description.sponsorship | We thank the Spanish Government (project MAT2009-14564-C04) and the Regional Valencian Government (Generalitat Valencia; project PROMETEO/2009/016 and ACOMP07/080) for support. S.R. is grateful to the Generalitat Valenciana for the fellowship awarded. SCSIE (Universidad de Valencia) is gratefully acknowledged for all the equipment employed. | en_EN |
dc.format.extent | 4 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation.ispartof | Chemistry - A European Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Chemosensors | es_ES |
dc.subject | Chromogenic detection | es_ES |
dc.subject | DFP recognition | es_ES |
dc.subject | Nerve-agent simulants | es_ES |
dc.subject | Organophosphonates | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | A Molecular Probe for the Highly Selective Chromogenic Detection of DFP, a Mimic of Sarin and Soman Nerve Agents | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/chem.201102241 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2009-14564-C04/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat Valenciana//ACOMP07%2F2009%2F080/ES/Desarrollo de quimiosensores en solución para especies de pequeño tamaño con interés biológico/ / | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Gotor Candel, RJ.; Costero Nieto, AM.; Gil Grau, S.; Parra Álvarez, M.; Martínez Mañez, R.; Sancenón Galarza, F. (2011). A Molecular Probe for the Highly Selective Chromogenic Detection of DFP, a Mimic of Sarin and Soman Nerve Agents. Chemistry - A European Journal. 17:11994-11997. https://doi.org/10.1002/chem.201102241 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/chem.201102241 | es_ES |
dc.description.upvformatpinicio | 11994 | es_ES |
dc.description.upvformatpfin | 11997 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.relation.senia | 206716 | |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Hill, H. H., & Martin, S. J. (2002). Conventional analytical methods for chemical warfare agents. Pure and Applied Chemistry, 74(12), 2281-2291. doi:10.1351/pac200274122281 | es_ES |
dc.description.references | Wheelis, M. (2002). Biotechnology and chemical weapons control. Pure and Applied Chemistry, 74(12), 2247-2251. doi:10.1351/pac200274122247 | es_ES |
dc.description.references | Gooding, J. J. (2006). Biosensor technology for detecting biological warfare agents: Recent progress and future trends. Analytica Chimica Acta, 559(2), 137-151. doi:10.1016/j.aca.2005.12.020 | es_ES |
dc.description.references | Arduini, F., Amine, A., Moscone, D., & Palleschi, G. (2010). Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B1 detection (review). Microchimica Acta, 170(3-4), 193-214. doi:10.1007/s00604-010-0317-1 | es_ES |
dc.description.references | Miller, R. A., Nazarov, E. G., Eiceman, G. A., & Thomas King, A. (2001). A MEMS radio-frequency ion mobility spectrometer for chemical vapor detection. Sensors and Actuators A: Physical, 91(3), 301-312. doi:10.1016/s0924-4247(01)00600-8 | es_ES |
dc.description.references | Tuovinen, K., Paakkanen, H., & Hänninen, O. (2001). Determination of soman and VX degradation products by an aspiration ion mobility spectrometry. Analytica Chimica Acta, 440(2), 151-159. doi:10.1016/s0003-2670(01)01063-7 | es_ES |
dc.description.references | Yu, T., Shen, J.-S., Bai, H.-H., Guo, L., Tang, J.-J., Jiang, Y.-B., & Xie, J.-W. (2009). A photoluminescent nanocrystal-based signaling protocol highly sensitive to nerve agents and highly toxic organophosphate pesticides. The Analyst, 134(10), 2153. doi:10.1039/b915159c | es_ES |
dc.description.references | Walker, J. P., Kimble, K. W., & Asher, S. A. (2007). Photonic crystal sensor for organophosphate nerve agents utilizing the organophosphorus hydrolase enzyme. Analytical and Bioanalytical Chemistry, 389(7-8), 2115-2124. doi:10.1007/s00216-007-1599-y | es_ES |
dc.description.references | Hopkins, A. R., & Lewis, N. S. (2001). Detection and Classification Characteristics of Arrays of Carbon Black/Organic Polymer Composite Chemiresistive Vapor Detectors for the Nerve Agent Simulants Dimethylmethylphosphonate and Diisopropylmethylphosponate. Analytical Chemistry, 73(5), 884-892. doi:10.1021/ac0008439 | es_ES |
dc.description.references | Sadik, O. A., Land, W. H., & Wang, J. (2003). Targeting Chemical and Biological Warfare Agents at the Molecular Level. Electroanalysis, 15(14), 1149-1159. doi:10.1002/elan.200390140 | es_ES |
dc.description.references | Wang, F., Gu, H., & Swager, T. M. (2008). Carbon Nanotube/Polythiophene Chemiresistive Sensors for Chemical Warfare Agents. Journal of the American Chemical Society, 130(16), 5392-5393. doi:10.1021/ja710795k | es_ES |
dc.description.references | Loui, A., Ratto, T. V., Wilson, T. S., McCall, S. K., Mukerjee, E. V., Love, A. H., & Hart, B. R. (2008). Chemical vapor discrimination using a compact and low-power array of piezoresistive microcantilevers. The Analyst, 133(5), 608. doi:10.1039/b713758c | es_ES |
dc.description.references | Yang, Y., Ji, H.-F., & Thundat, T. (2003). Nerve Agents Detection Using a Cu2+/l-Cysteine Bilayer-Coated Microcantilever. Journal of the American Chemical Society, 125(5), 1124-1125. doi:10.1021/ja028181n | es_ES |
dc.description.references | McBride, M. T., Gammon, S., Pitesky, M., O’Brien, T. W., Smith, T., Aldrich, J., … Venkateswaran, K. S. (2003). Multiplexed Liquid Arrays for Simultaneous Detection of Simulants of Biological Warfare Agents. Analytical Chemistry, 75(8), 1924-1930. doi:10.1021/ac026379k | es_ES |
dc.description.references | Song, L., Ahn, S., & Walt, D. R. (2006). Fiber-Optic Microsphere-Based Arrays for Multiplexed Biological Warfare Agent Detection. Analytical Chemistry, 78(4), 1023-1033. doi:10.1021/ac051417w | es_ES |
dc.description.references | Burnworth, M., Rowan, S. J., & Weder, C. (2007). Fluorescent Sensors for the Detection of Chemical Warfare Agents. Chemistry - A European Journal, 13(28), 7828-7836. doi:10.1002/chem.200700720 | es_ES |
dc.description.references | Royo, S., Martínez-Máñez, R., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2007). Chromogenic and fluorogenic reagents for chemical warfare nerve agents’ detection. Chemical Communications, (46), 4839. doi:10.1039/b707063b | es_ES |
dc.description.references | Van Houten, K. A., Heath, D. C., & Pilato, R. S. (1998). Rapid Luminescent Detection of Phosphate Esters in Solution and the Gas Phase Using (dppe)Pt{S2C2(2-pyridyl)(CH2CH2OH)}. Journal of the American Chemical Society, 120(47), 12359-12360. doi:10.1021/ja982365d | es_ES |
dc.description.references | Zhang, S.-W., & Swager, T. M. (2003). Fluorescent Detection of Chemical Warfare Agents: Functional Group Specific Ratiometric Chemosensors. Journal of the American Chemical Society, 125(12), 3420-3421. doi:10.1021/ja029265z | es_ES |
dc.description.references | Dale, T. J., & Rebek, J. (2006). Fluorescent Sensors for Organophosphorus Nerve Agent Mimics. Journal of the American Chemical Society, 128(14), 4500-4501. doi:10.1021/ja057449i | es_ES |
dc.description.references | Ilhan, F., Tyson, D. S., & Meador, M. A. (2004). Synthesis and Chemosensory Behavior of Anthracene Bisimide Derivatives. Chemistry of Materials, 16(16), 2978-2980. doi:10.1021/cm049508h | es_ES |
dc.description.references | Bencic-Nagale, S., Sternfeld, T., & Walt, D. R. (2006). Microbead Chemical Switches: An Approach to Detection of Reactive Organophosphate Chemical Warfare Agent Vapors. Journal of the American Chemical Society, 128(15), 5041-5048. doi:10.1021/ja057057b | es_ES |
dc.description.references | Dale, T. J., & Rebek, J. (2009). Hydroxy Oximes as Organophosphorus Nerve Agent Sensors. Angewandte Chemie, 121(42), 7990-7992. doi:10.1002/ange.200902820 | es_ES |
dc.description.references | Dale, T. J., & Rebek, J. (2009). Hydroxy Oximes as Organophosphorus Nerve Agent Sensors. Angewandte Chemie International Edition, 48(42), 7850-7852. doi:10.1002/anie.200902820 | es_ES |
dc.description.references | Wallace, K. J., Fagbemi, R. I., Folmer-Andersen, F. J., Morey, J., Lynth, V. M., & Anslyn, E. V. (2006). Detection of chemical warfare simulants by phosphorylation of a coumarin oximate. Chemical Communications, (37), 3886. doi:10.1039/b609861d | es_ES |
dc.description.references | Hewage, H. S., Wallace, K. J., & Anslyn, E. V. (2007). Novel chemiluminescent detection of chemical warfare simulant. Chemical Communications, (38), 3909. doi:10.1039/b706624d | es_ES |
dc.description.references | Han, S., Xue, Z., Wang, Z., & Wen, T. B. (2010). Visual and fluorogenic detection of a nerve agent simulant via a Lossen rearrangement of rhodamine–hydroxamate. Chemical Communications, 46(44), 8413. doi:10.1039/c0cc02881a | es_ES |
dc.description.references | Wallace, K. J., Morey, J., Lynch, V. M., & Anslyn, E. V. (2005). Colorimetric detection of chemical warfare simulants. New Journal of Chemistry, 29(11), 1469. doi:10.1039/b506100h | es_ES |
dc.description.references | Southard, G. E., Van Houten, K. A., Ott, E. W., & Murray, G. M. (2007). Luminescent sensing of organophosphates using europium(III) containing imprinted polymers prepared by RAFT polymerization. Analytica Chimica Acta, 581(2), 202-207. doi:10.1016/j.aca.2006.08.027 | es_ES |
dc.description.references | Jenkins, A. L., Manuel Uy, O., & Murray, G. M. (1997). Polymer Based Lanthanide Luminescent Sensors for the Detection of Nerve Agents. Analytical Communications, 34(8), 221-224. doi:10.1039/a704220e | es_ES |
dc.description.references | Jenkins, A. L., & Bae, S. Y. (2005). Molecularly imprinted polymers for chemical agent detection in multiple water matrices. Analytica Chimica Acta, 542(1), 32-37. doi:10.1016/j.aca.2004.12.088 | es_ES |
dc.description.references | Jenkins, A. L., Uy, O. M., & Murray, G. M. (1999). Polymer-Based Lanthanide Luminescent Sensor for Detection of the Hydrolysis Product of the Nerve Agent Soman in Water. Analytical Chemistry, 71(2), 373-378. doi:10.1021/ac980985r | es_ES |
dc.description.references | Virel, A., Saa, L., & Pavlov, V. (2009). Modulated Growth of Nanoparticles. Application for Sensing Nerve Gases. Analytical Chemistry, 81(1), 268-272. doi:10.1021/ac801949x | es_ES |
dc.description.references | Pavlov, V., Xiao, Y., & Willner, I. (2005). Inhibition of the Acetycholine Esterase-Stimulated Growth of Au Nanoparticles: Nanotechnology-Based Sensing of Nerve Gases. Nano Letters, 5(4), 649-653. doi:10.1021/nl050054c | es_ES |
dc.description.references | Simonian, A. L., Good, T. A., Wang, S.-S., & Wild, J. R. (2005). Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides. Analytica Chimica Acta, 534(1), 69-77. doi:10.1016/j.aca.2004.06.056 | es_ES |
dc.description.references | Dasary, S. S. R., Rai, U. S., Yu, H., Anjaneyulu, Y., Dubey, M., & Ray, P. C. (2008). Gold nanoparticle based surface enhanced fluorescence for detection of organophosphorus agents. Chemical Physics Letters, 460(1-3), 187-190. doi:10.1016/j.cplett.2008.05.082 | es_ES |
dc.description.references | Kong, L., Wang, J., Luo, T., Meng, F., Chen, X., Li, M., & Liu, J. (2010). Novel pyrenehexafluoroisopropanol derivative-decorated single-walled carbon nanotubes for detection of nerve agents by strong hydrogen-bonding interaction. The Analyst, 135(2), 368-374. doi:10.1039/b920266h | es_ES |
dc.description.references | Costero, A. M., Gil, S., Parra, M., Mancini, P. M. E., Martínez-Máñez, R., Sancenón, F., & Royo, S. (2008). Chromogenic detection of nerve agent mimics. Chemical Communications, (45), 6002. doi:10.1039/b811247a | es_ES |
dc.description.references | Costero, A. M., Parra, M., Gil, S., Gotor, R., Mancini, P. M. E., Martínez-Máñez, R., … Royo, S. (2010). Chromo-Fluorogenic Detection of Nerve-Agent Mimics Using Triggered Cyclization Reactions in Push-Pull Dyes. Chemistry - An Asian Journal, 5(7), 1573-1585. doi:10.1002/asia.201000058 | es_ES |
dc.description.references | Knapton, D., Burnworth, M., Rowan, S. J., & Weder, C. (2006). Fluorescent Organometallic Sensors for the Detection of Chemical-Warfare-Agent Mimics. Angewandte Chemie, 118(35), 5957-5961. doi:10.1002/ange.200601634 | es_ES |
dc.description.references | Knapton, D., Burnworth, M., Rowan, S. J., & Weder, C. (2006). Fluorescent Organometallic Sensors for the Detection of Chemical-Warfare-Agent Mimics. Angewandte Chemie International Edition, 45(35), 5825-5829. doi:10.1002/anie.200601634 | es_ES |
dc.description.references | Climent, E., Martí, A., Royo, S., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Parra, M. (2010). Chromogenic Detection of Nerve Agent Mimics by Mass Transport Control at the Surface of Bifunctionalized Silica Nanoparticles. Angewandte Chemie, 122(34), 6081-6084. doi:10.1002/ange.201001088 | es_ES |
dc.description.references | Climent, E., Martí, A., Royo, S., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Parra, M. (2010). Chromogenic Detection of Nerve Agent Mimics by Mass Transport Control at the Surface of Bifunctionalized Silica Nanoparticles. Angewandte Chemie International Edition, 49(34), 5945-5948. doi:10.1002/anie.201001088 | es_ES |
dc.description.references | Royo, S., Costero, A. M., Parra, M., Gil, S., Martínez-Máñez, R., & Sancenón, F. (2011). Chromogenic, Specific Detection of the Nerve-Agent Mimic DCNP (a Tabun Mimic). Chemistry - A European Journal, 17(25), 6931-6934. doi:10.1002/chem.201100602 | es_ES |
dc.description.references | Kim, T.-H., & Swager, T. M. (2003). A Fluorescent Self-Amplifying Wavelength-Responsive Sensory Polymer for Fluoride Ions. Angewandte Chemie, 115(39), 4951-4954. doi:10.1002/ange.200352075 | es_ES |
dc.description.references | Kim, T.-H., & Swager, T. M. (2003). A Fluorescent Self-Amplifying Wavelength-Responsive Sensory Polymer for Fluoride Ions. Angewandte Chemie International Edition, 42(39), 4803-4806. doi:10.1002/anie.200352075 | es_ES |
dc.description.references | Nishiyabu, R., & Anzenbacher, P. (2005). Sensing of Antipyretic Carboxylates by Simple Chromogenic Calix[4]pyrroles. Journal of the American Chemical Society, 127(23), 8270-8271. doi:10.1021/ja051421p | es_ES |