Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials, 22(35), 3906-3924. doi:10.1002/adma.201001068
Eda, G., Mattevi, C., Yamaguchi, H., Kim, H., & Chhowalla, M. (2009). Insulator to Semimetal Transition in Graphene Oxide. The Journal of Physical Chemistry C, 113(35), 15768-15771. doi:10.1021/jp9051402
Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H. B., Evmenenko, G., … Ruoff, R. S. (2007). Preparation and characterization of graphene oxide paper. Nature, 448(7152), 457-460. doi:10.1038/nature06016
[+]
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials, 22(35), 3906-3924. doi:10.1002/adma.201001068
Eda, G., Mattevi, C., Yamaguchi, H., Kim, H., & Chhowalla, M. (2009). Insulator to Semimetal Transition in Graphene Oxide. The Journal of Physical Chemistry C, 113(35), 15768-15771. doi:10.1021/jp9051402
Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H. B., Evmenenko, G., … Ruoff, R. S. (2007). Preparation and characterization of graphene oxide paper. Nature, 448(7152), 457-460. doi:10.1038/nature06016
Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4(4), 217-224. doi:10.1038/nnano.2009.58
Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339. doi:10.1021/ja01539a017
Yeh, T.-F., Syu, J.-M., Cheng, C., Chang, T.-H., & Teng, H. (2010). Graphite Oxide as a Photocatalyst for Hydrogen Production from Water. Advanced Functional Materials, 20(14), 2255-2262. doi:10.1002/adfm.201000274
Yeh, T.-F., Chan, F.-F., Hsieh, C.-T., & Teng, H. (2011). Graphite Oxide with Different Oxygenated Levels for Hydrogen and Oxygen Production from Water under Illumination: The Band Positions of Graphite Oxide. The Journal of Physical Chemistry C, 115(45), 22587-22597. doi:10.1021/jp204856c
Ng, Y. H., Iwase, A., Kudo, A., & Amal, R. (2010). Reducing Graphene Oxide on a Visible-Light BiVO4 Photocatalyst for an Enhanced Photoelectrochemical Water Splitting. The Journal of Physical Chemistry Letters, 1(17), 2607-2612. doi:10.1021/jz100978u
Iwase, A., Ng, Y. H., Ishiguro, Y., Kudo, A., & Amal, R. (2011). Reduced Graphene Oxide as a Solid-State Electron Mediator in Z-Scheme Photocatalytic Water Splitting under Visible Light. Journal of the American Chemical Society, 133(29), 11054-11057. doi:10.1021/ja203296z
Li, Q., Guo, B., Yu, J., Ran, J., Zhang, B., Yan, H., & Gong, J. R. (2011). Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated Graphene Nanosheets. Journal of the American Chemical Society, 133(28), 10878-10884. doi:10.1021/ja2025454
KHAN, M., WOO, S., & YANG, O. (2008). Hydrothermally stabilized Fe(III) doped titania active under visible light for water splitting reaction. International Journal of Hydrogen Energy, 33(20), 5345-5351. doi:10.1016/j.ijhydene.2008.07.119
O’Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737-740. doi:10.1038/353737a0
Min, S., & Lu, G. (2011). Dye-Sensitized Reduced Graphene Oxide Photocatalysts for Highly Efficient Visible-Light-Driven Water Reduction. The Journal of Physical Chemistry C, 115(28), 13938-13945. doi:10.1021/jp203750z
Yang, D., Velamakanni, A., Bozoklu, G., Park, S., Stoller, M., Piner, R. D., … Ruoff, R. S. (2009). Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon, 47(1), 145-152. doi:10.1016/j.carbon.2008.09.045
Yuan, Y.-J., Zhang, J.-Y., Yu, Z.-T., Feng, J.-Y., Luo, W.-J., Ye, J.-H., & Zou, Z.-G. (2012). Impact of Ligand Modification on Hydrogen Photogeneration and Light-Harvesting Applications Using Cyclometalated Iridium Complexes. Inorganic Chemistry, 51(7), 4123-4133. doi:10.1021/ic202423y
Li, L., Duan, L., Wen, F., Li, C., Wang, M., Hagfeldt, A., & Sun, L. (2012). Visible light driven hydrogen production from a photo-active cathode based on a molecular catalyst and organic dye-sensitized p-type nanostructured NiO. Chem. Commun., 48(7), 988-990. doi:10.1039/c2cc16101j
Koops, S. E., O’Regan, B. C., Barnes, P. R. F., & Durrant, J. R. (2009). Parameters Influencing the Efficiency of Electron Injection in Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 131(13), 4808-4818. doi:10.1021/ja8091278
Juris, A., Balzani, V., Barigelletti, F., Campagna, S., Belser, P., & von Zelewsky, A. (1988). Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence. Coordination Chemistry Reviews, 84, 85-277. doi:10.1016/0010-8545(88)80032-8
Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., … Tour, J. M. (2010). Improved Synthesis of Graphene Oxide. ACS Nano, 4(8), 4806-4814. doi:10.1021/nn1006368
Martín, N., & Muñiz, K. (2010). Congratulations to Professor José Barluenga on his 70th Birthday. Chemistry - A European Journal, 16(32), 9696-9697. doi:10.1002/chem.201001986
De Miguel, M., Álvaro, M., & García, H. (2012). Graphene as a Quencher of Electronic Excited States of Photochemical Probes. Langmuir, 28(5), 2849-2857. doi:10.1021/la204023w
Abe, R., Sayama, K., & Arakawa, H. (2004). Dye-sensitized photocatalysts for efficient hydrogen production from aqueous I− solution under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 166(1-3), 115-122. doi:10.1016/j.jphotochem.2004.04.031
Gonzalez, C. M., Liu, Y., & Scaiano, J. C. (2009). Photochemical Strategies for the Facile Synthesis of Gold−Silver Alloy and Core−Shell Bimetallic Nanoparticles. The Journal of Physical Chemistry C, 113(27), 11861-11867. doi:10.1021/jp902061v
[-]