- -

A novel role for protein kinase Gcn2 in yeast tolerance to intracellular acid stress

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


A novel role for protein kinase Gcn2 in yeast tolerance to intracellular acid stress

Show full item record

Hueso Lorente, G.; Aparicio Sanchis, R.; Montesinos De Lago, C.; Lorenz, S.; Murguía Ibáñez, JR.; Serrano Salom, R. (2012). A novel role for protein kinase Gcn2 in yeast tolerance to intracellular acid stress. Biochemical Journal. 441(1):255-264. https://doi.org/10.1042/BJ20111264

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/33762

Files in this item

Item Metadata

Title: A novel role for protein kinase Gcn2 in yeast tolerance to intracellular acid stress
Author: Hueso Lorente, Guillem Aparicio Sanchis, Rafael Montesinos De Lago, Consuelo Lorenz, Silvia Murguía Ibáñez, José Ramón Serrano Salom, Ramón
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Intracellular pH conditions many cellular systems, but its mechanisms of regulation and perception are mostly unknown. We have identified two yeast genes important for tolerance to intracellular acidification caused by ...[+]
Subjects: Ph homeostasis , Signal transduction , Gcn2 , Saccharomyces cerevisiae , Amino acid transport
Copyrigths: Cerrado
Biochemical Journal. (issn: 0264-6021 ) (eissn: 1470-8728 )
DOI: 10.1042/BJ20111264
Portland Press
Publisher version: http://doi:10.1042/BJ20111264
Project ID:
This work was funded by grants from the Spanish Ministerio de Ciencia e Innovacion (Madrid) [grant number BFU2008-00604] and the Generalitat Valenciana (Valencia) [grant number Prometeo/2010/038].
Type: Artículo


EPEL, D., & DUBÉ, F. (1987). Intracellular pH and Cell Proliferation. Control of Animal Cell Proliferation, 363-393. doi:10.1016/b978-0-12-123062-3.50019-0

Perona, R., & Serrano, R. (1988). Increased pH and tumorigenicity of fibroblasts expressing a yeast proton pump. Nature, 334(6181), 438-440. doi:10.1038/334438a0

Gottlieb, R. A., Nordberg, J., Skowronski, E., & Babior, B. M. (1996). Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification. Proceedings of the National Academy of Sciences, 93(2), 654-658. doi:10.1073/pnas.93.2.654 [+]
EPEL, D., & DUBÉ, F. (1987). Intracellular pH and Cell Proliferation. Control of Animal Cell Proliferation, 363-393. doi:10.1016/b978-0-12-123062-3.50019-0

Perona, R., & Serrano, R. (1988). Increased pH and tumorigenicity of fibroblasts expressing a yeast proton pump. Nature, 334(6181), 438-440. doi:10.1038/334438a0

Gottlieb, R. A., Nordberg, J., Skowronski, E., & Babior, B. M. (1996). Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification. Proceedings of the National Academy of Sciences, 93(2), 654-658. doi:10.1073/pnas.93.2.654

Ludovico, P., Leão, C., Sousa, M. J., Côrte-Real, M., & Silva, M. T. (2001). Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology, 147(9), 2409-2415. doi:10.1099/00221287-147-9-2409

Macpherson, N. (2005). Plasma membrane H+ and K+ transporters are involved in the weak-acid preservative response of disparate food spoilage yeasts. Microbiology, 151(6), 1995-2003. doi:10.1099/mic.0.27502-0

Vandal, O. H., Nathan, C. F., & Ehrt, S. (2009). Acid Resistance in Mycobacterium tuberculosis. Journal of Bacteriology, 191(15), 4714-4721. doi:10.1128/jb.00305-09

Raven, J. A., & Smith, F. A. (1976). The evolution of chemiosmotic energy coupling. Journal of Theoretical Biology, 57(2), 301-312. doi:10.1016/0022-5193(76)90003-5

Eraso, P., & Gancedo, C. (1987). Activation of yeast plasma membrane ATPase by acid pH during growth. FEBS Letters, 224(1), 187-192. doi:10.1016/0014-5793(87)80445-3

Vallejo, C. G., & Serrano, R. (1989). Physiology of mutants with reduced expression of plasma membrane H+-ATPase. Yeast, 5(4), 307-319. doi:10.1002/yea.320050411

Felle, H. H. (2001). pH: Signal and Messenger in Plant Cells. Plant Biology, 3(6), 577-591. doi:10.1055/s-2001-19372

Pedersen, S. F. (2006). The Na+/H+ exchanger NHE1 in stress-induced signal transduction: implications for cell proliferation and cell death. Pflügers Archiv - European Journal of Physiology, 452(3), 249-259. doi:10.1007/s00424-006-0044-y

Yenush, L., Merchan, S., Holmes, J., & Serrano, R. (2005). pH-Responsive, Posttranslational Regulation of the Trk1 Potassium Transporter by the Type 1-Related Ppz1 Phosphatase. Molecular and Cellular Biology, 25(19), 8683-8692. doi:10.1128/mcb.25.19.8683-8692.2005

Stark, M. (2004). Protein phosphorylation and dephosphorylation. Metabolism and Molecular Physiology of Saccharomyces Cerevisiae, 2nd Edition, 284-375. doi:10.1201/9780203503867.ch8

Schüller, C., Brewster, J. L., Alexander, M. R., Gustin, M. C., & Ruis, H. (1994). The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. The EMBO Journal, 13(18), 4382-4389. doi:10.1002/j.1460-2075.1994.tb06758.x

Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., … Brown, P. O. (2000). Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes. Molecular Biology of the Cell, 11(12), 4241-4257. doi:10.1091/mbc.11.12.4241

Causton, H. C., Ren, B., Koh, S. S., Harbison, C. T., Kanin, E., Jennings, E. G., … Young, R. A. (2001). Remodeling of Yeast Genome Expression in Response to Environmental Changes. Molecular Biology of the Cell, 12(2), 323-337. doi:10.1091/mbc.12.2.323

Schüller, C., Mamnun, Y. M., Mollapour, M., Krapf, G., Schuster, M., Bauer, B. E., … Kuchler, K. (2004). Global Phenotypic Analysis and Transcriptional Profiling Defines the Weak Acid Stress Response Regulon in Saccharomyces cerevisiae. Molecular Biology of the Cell, 15(2), 706-720. doi:10.1091/mbc.e03-05-0322

Mollapour, M., & Piper, P. W. (2007). Hog1 Mitogen-Activated Protein Kinase Phosphorylation Targets the Yeast Fps1 Aquaglyceroporin for Endocytosis, Thereby Rendering Cells Resistant to Acetic Acid. Molecular and Cellular Biology, 27(18), 6446-6456. doi:10.1128/mcb.02205-06

Yenush, L. (2002). The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. The EMBO Journal, 21(5), 920-929. doi:10.1093/emboj/21.5.920

Winzeler, E. A. (1999). Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis. Science, 285(5429), 901-906. doi:10.1126/science.285.5429.901

Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Véronneau, S., … André, B. (2002). Functional profiling of the Saccharomyces cerevisiae genome. Nature, 418(6896), 387-391. doi:10.1038/nature00935

Mollapour, M., Fong, D., Balakrishnan, K., Harris, N., Thompson, S., Schüller, C., … Piper, P. W. (2004). Screening the yeast deletant mutant collection for hypersensitivity and hyper-resistance to sorbate, a weak organic acid food preservative. Yeast, 21(11), 927-946. doi:10.1002/yea.1141

Kawahata, M., Masaki, K., Fujii, T., & Iefuji, H. (2006). Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids inSaccharomyces cerevisiaecultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Research, 6(6), 924-936. doi:10.1111/j.1567-1364.2006.00089.x

Mira, N. P., Palma, M., Guerreiro, J. F., & Sá-Correia, I. (2010). Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microbial Cell Factories, 9(1), 79. doi:10.1186/1475-2859-9-79

Bauer, B. E., Rossington, D., Mollapour, M., Mamnun, Y., Kuchler, K., & Piper, P. W. (2003). Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants. European Journal of Biochemistry, 270(15), 3189-3195. doi:10.1046/j.1432-1033.2003.03701.x

Piper, P. (1998). The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. The EMBO Journal, 17(15), 4257-4265. doi:10.1093/emboj/17.15.4257

Klemm, R. W., Ejsing, C. S., Surma, M. A., Kaiser, H.-J., Gerl, M. J., Sampaio, J. L., … Simons, K. (2009). Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. The Journal of Cell Biology, 185(4), 601-612. doi:10.1083/jcb.200901145

Brett, C. L., Tukaye, D. N., Mukherjee, S., & Rao, R. (2005). The Yeast Endosomal Na+(K+)/H+ Exchanger Nhx1 Regulates Cellular pH to Control Vesicle Trafficking. Molecular Biology of the Cell, 16(3), 1396-1405. doi:10.1091/mbc.e04-11-0999

Krebs, H. A., Wiggins, D., Stubbs, M., Sols, A., & Bedoya, F. (1983). Studies on the mechanism of the antifungal action of benzoate. Biochemical Journal, 214(3), 657-663. doi:10.1042/bj2140657

PORTILLO, F., & SERRANO, R. (1989). Growth control strength and active site of yeast plasma membrane ATPase studied by site-directed mutagenesis. European Journal of Biochemistry, 186(3), 501-507. doi:10.1111/j.1432-1033.1989.tb15235.x

Mulet, J. M., Leube, M. P., Kron, S. J., Rios, G., Fink, G. R., & Serrano, R. (1999). A Novel Mechanism of Ion Homeostasis and Salt Tolerance in Yeast: the Hal4 and Hal5 Protein Kinases Modulate the Trk1-Trk2 Potassium Transporter. Molecular and Cellular Biology, 19(5), 3328-3337. doi:10.1128/mcb.19.5.3328

Simoes, T., Mira, N. P., Fernandes, A. R., & Sa-Correia, I. (2006). The SPI1 Gene, Encoding a Glycosylphosphatidylinositol-Anchored Cell Wall Protein, Plays a Prominent Role in the Development of Yeast Resistance to Lipophilic Weak-Acid Food Preservatives. Applied and Environmental Microbiology, 72(11), 7168-7175. doi:10.1128/aem.01476-06

Chattopadhyay, S., Muzaffar, N. E., Sherman, F., & Pearce, D. A. (2000). The Yeast Model for Batten Disease: Mutations in btn1, btn2, and hsp30 Alter pH Homeostasis. Journal of Bacteriology, 182(22), 6418-6423. doi:10.1128/jb.182.22.6418-6423.2000

Tenreiro, S., Nunes, P. A., Viegas, C. A., Neves, M. S., Teixeira, M. C., Cabral, M. G., & Sá-Correia, I. (2002). AQR1 Gene (ORF YNL065w) Encodes a Plasma Membrane Transporter of the Major Facilitator Superfamily That Confers Resistance to Short-Chain Monocarboxylic Acids and Quinidine in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 292(3), 741-748. doi:10.1006/bbrc.2002.6703

Giannattasio, S., Guaragnella, N., Corte-Real, M., Passarella, S., & Marra, E. (2005). Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death. Gene, 354, 93-98. doi:10.1016/j.gene.2005.03.030

Ludovico, P., Rodrigues, F., Almeida, A., Silva, M. T., Barrientos, A., & Côrte-Real, M. (2002). Cytochrome c Release and Mitochondria Involvement in Programmed Cell Death Induced by Acetic Acid in Saccharomyces cerevisiae. Molecular Biology of the Cell, 13(8), 2598-2606. doi:10.1091/mbc.e01-12-0161

Guarente, L., Yocum, R. R., & Gifford, P. (1982). A GAL10-CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site. Proceedings of the National Academy of Sciences, 79(23), 7410-7414. doi:10.1073/pnas.79.23.7410

Baker Brachmann, C., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter, P., & Boeke, J. D. (1998). Designer deletion strains derived fromSaccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast, 14(2), 115-132. doi:10.1002/(sici)1097-0061(19980130)14:2<115::aid-yea204>3.0.co;2-2

Huh, W.-K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S., & O’Shea, E. K. (2003). Global analysis of protein localization in budding yeast. Nature, 425(6959), 686-691. doi:10.1038/nature02026

Dever, T. E., Feng, L., Wek, R. C., Cigan, A. M., Donahue, T. F., & Hinnebusch, A. G. (1992). Phosphorylation of initiation factor 2α by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell, 68(3), 585-596. doi:10.1016/0092-8674(92)90193-g

Sherman, F. (1991). [1] Getting started with yeast. Methods in Enzymology, 3-21. doi:10.1016/0076-6879(91)94004-v

Schiestl, R. H., & Gietz, R. D. (1989). High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Current Genetics, 16(5-6), 339-346. doi:10.1007/bf00340712

Carlson, M., & Botstein, D. (1982). Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase. Cell, 28(1), 145-154. doi:10.1016/0092-8674(82)90384-1

Wek, R. C., Cannon, J. F., Dever, T. E., & Hinnebusch, A. G. (1992). Truncated protein phosphatase GLC7 restores translational activation of GCN4 expression in yeast mutants defective for the eIF-2 alpha kinase GCN2. Molecular and Cellular Biology, 12(12), 5700-5710. doi:10.1128/mcb.12.12.5700

Hill, J. E., Myers, A. M., Koerner, T. J., & Tzagoloff, A. (1986). Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast, 2(3), 163-167. doi:10.1002/yea.320020304

Elledge, S. J., & Davis, R. W. (1988). A family of versatile centromeric vectors designed for use in the sectoring-shuffle mutagenesis assay in Saccharomyces cerevisiae. Gene, 70(2), 303-312. doi:10.1016/0378-1119(88)90202-8

Sarkar, S., Azad, A. K., & Hopper, A. K. (1999). Nuclear tRNA aminoacylation and its role in nuclear export of endogenous tRNAs in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 96(25), 14366-14371. doi:10.1073/pnas.96.25.14366

Whitney, M. L., Hurto, R. L., Shaheen, H. H., & Hopper, A. K. (2007). Rapid and Reversible Nuclear Accumulation of Cytoplasmic tRNA in Response to Nutrient Availability. Molecular Biology of the Cell, 18(7), 2678-2686. doi:10.1091/mbc.e07-01-0006

Horák, J. (1997). Yeast nutrient transporters. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1331(1), 41-79. doi:10.1016/s0304-4157(96)00015-9

STEIN, W. D. (1986). The Cotransport Systems: Two Substrates That Are Carried on a Single Transporter. Transport and Diffusion Across Cell Membranes, 363-474. doi:10.1016/b978-0-12-664660-3.50010-7

Regenberg, B., Düring-Olsen, L., Kielland-Brandt, M. C., & Holmberg, S. (1999). Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae. Current Genetics, 36(6), 317-328. doi:10.1007/s002940050506

Hinnebusch, A. G. (2005). TRANSLATIONAL REGULATION OFGCN4AND THE GENERAL AMINO ACID CONTROL OF YEAST. Annual Review of Microbiology, 59(1), 407-450. doi:10.1146/annurev.micro.59.031805.133833

Natarajan, K., Meyer, M. R., Jackson, B. M., Slade, D., Roberts, C., Hinnebusch, A. G., & Marton, M. J. (2001). Transcriptional Profiling Shows that Gcn4p Is a Master Regulator of Gene Expression during Amino Acid Starvation in Yeast. Molecular and Cellular Biology, 21(13), 4347-4368. doi:10.1128/mcb.21.13.4347-4368.2001

Goossens, A., Dever, T. E., Pascual-Ahuir, A., & Serrano, R. (2001). The Protein Kinase Gcn2p Mediates Sodium Toxicity in Yeast. Journal of Biological Chemistry, 276(33), 30753-30760. doi:10.1074/jbc.m102960200

Vilela, C., & McCarthy, J. E. G. (2003). Regulation of fungal gene expression via short open reading frames in the mRNA 5′untranslated region. Molecular Microbiology, 49(4), 859-867. doi:10.1046/j.1365-2958.2003.03622.x

Hinnebusch, A. G., & Natarajan, K. (2002). Gcn4p, a Master Regulator of Gene Expression, Is Controlled at Multiple Levels by Diverse Signals of Starvation and Stress. Eukaryotic Cell, 1(1), 22-32. doi:10.1128/ec.01.1.22-32.2002

Wek, R. C., Jiang, H.-Y., & Anthony, T. G. (2006). Coping with stress: eIF2 kinases and translational control. Biochemical Society Transactions, 34(1), 7-11. doi:10.1042/bst0340007

Lageix, S., Lanet, E., Pouch-Pélissier, M.-N., Espagnol, M.-C., Robaglia, C., Deragon, J.-M., & Pélissier, T. (2008). Arabidopsis eIF2α kinase GCN2 is essential for growth in stress conditions and is activated by wounding. BMC Plant Biology, 8(1), 134. doi:10.1186/1471-2229-8-134

Mueller, P. P., & Hinnebusch, A. G. (1986). Multiple upstream AUG codons mediate translational control of GCN4. Cell, 45(2), 201-207. doi:10.1016/0092-8674(86)90384-3

Lauwers, E., Erpapazoglou, Z., Haguenauer-Tsapis, R., & André, B. (2010). The ubiquitin code of yeast permease trafficking. Trends in Cell Biology, 20(4), 196-204. doi:10.1016/j.tcb.2010.01.004

De Craene, J.-O., Soetens, O., & André, B. (2001). The Npr1 Kinase Controls Biosynthetic and Endocytic Sorting of the Yeast Gap1 Permease. Journal of Biological Chemistry, 276(47), 43939-43948. doi:10.1074/jbc.m102944200

Omura, F., & Kodama, Y. (2004). The N-terminal domain of yeast Bap2 permease is phosphorylated dependently on the Npr1 kinase in response to starvation. FEMS Microbiology Letters, 230(2), 227-234. doi:10.1016/s0378-1097(03)00918-2

Hunter, T., & Plowman, G. D. (1997). The protein kinases of budding yeast: six score and more. Trends in Biochemical Sciences, 22(1), 18-22. doi:10.1016/s0968-0004(96)10068-2

Goossens, A., de la Fuente, N., Forment, J., Serrano, R., & Portillo, F. (2000). Regulation of Yeast H+-ATPase by Protein Kinases Belonging to a Family Dedicated to Activation of Plasma Membrane Transporters. Molecular and Cellular Biology, 20(20), 7654-7661. doi:10.1128/mcb.20.20.7654-7661.2000

Cvijović, M., Dalevi, D., Bilsland, E., Kemp, G. J., & Sunnerhagen, P. (2007). Identification of putative regulatory upstream ORFs in the yeast genome using heuristics and evolutionary conservation. BMC Bioinformatics, 8(1), 295. doi:10.1186/1471-2105-8-295

Zaborske, J. M., Narasimhan, J., Jiang, L., Wek, S. A., Dittmar, K. A., Freimoser, F., … Wek, R. C. (2009). Genome-wide Analysis of tRNA Charging and Activation of the eIF2 Kinase Gcn2p. Journal of Biological Chemistry, 284(37), 25254-25267. doi:10.1074/jbc.m109.000877

Weitzel, G., Pilatus, U., & Rensing, L. (1987). The cytoplasmic pH, ATP content and total protein synthesis rate during heat-shock protein inducing treatments in yeast. Experimental Cell Research, 170(1), 64-79. doi:10.1016/0014-4827(87)90117-0




This item appears in the following Collection(s)

Show full item record