EPEL, D., & DUBÉ, F. (1987). Intracellular pH and Cell Proliferation. Control of Animal Cell Proliferation, 363-393. doi:10.1016/b978-0-12-123062-3.50019-0
Perona, R., & Serrano, R. (1988). Increased pH and tumorigenicity of fibroblasts expressing a yeast proton pump. Nature, 334(6181), 438-440. doi:10.1038/334438a0
Gottlieb, R. A., Nordberg, J., Skowronski, E., & Babior, B. M. (1996). Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification. Proceedings of the National Academy of Sciences, 93(2), 654-658. doi:10.1073/pnas.93.2.654
[+]
EPEL, D., & DUBÉ, F. (1987). Intracellular pH and Cell Proliferation. Control of Animal Cell Proliferation, 363-393. doi:10.1016/b978-0-12-123062-3.50019-0
Perona, R., & Serrano, R. (1988). Increased pH and tumorigenicity of fibroblasts expressing a yeast proton pump. Nature, 334(6181), 438-440. doi:10.1038/334438a0
Gottlieb, R. A., Nordberg, J., Skowronski, E., & Babior, B. M. (1996). Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification. Proceedings of the National Academy of Sciences, 93(2), 654-658. doi:10.1073/pnas.93.2.654
Ludovico, P., Leão, C., Sousa, M. J., Côrte-Real, M., & Silva, M. T. (2001). Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology, 147(9), 2409-2415. doi:10.1099/00221287-147-9-2409
Macpherson, N. (2005). Plasma membrane H+ and K+ transporters are involved in the weak-acid preservative response of disparate food spoilage yeasts. Microbiology, 151(6), 1995-2003. doi:10.1099/mic.0.27502-0
Vandal, O. H., Nathan, C. F., & Ehrt, S. (2009). Acid Resistance in Mycobacterium tuberculosis. Journal of Bacteriology, 191(15), 4714-4721. doi:10.1128/jb.00305-09
Raven, J. A., & Smith, F. A. (1976). The evolution of chemiosmotic energy coupling. Journal of Theoretical Biology, 57(2), 301-312. doi:10.1016/0022-5193(76)90003-5
Eraso, P., & Gancedo, C. (1987). Activation of yeast plasma membrane ATPase by acid pH during growth. FEBS Letters, 224(1), 187-192. doi:10.1016/0014-5793(87)80445-3
Vallejo, C. G., & Serrano, R. (1989). Physiology of mutants with reduced expression of plasma membrane H+-ATPase. Yeast, 5(4), 307-319. doi:10.1002/yea.320050411
Felle, H. H. (2001). pH: Signal and Messenger in Plant Cells. Plant Biology, 3(6), 577-591. doi:10.1055/s-2001-19372
Pedersen, S. F. (2006). The Na+/H+ exchanger NHE1 in stress-induced signal transduction: implications for cell proliferation and cell death. Pflügers Archiv - European Journal of Physiology, 452(3), 249-259. doi:10.1007/s00424-006-0044-y
Yenush, L., Merchan, S., Holmes, J., & Serrano, R. (2005). pH-Responsive, Posttranslational Regulation of the Trk1 Potassium Transporter by the Type 1-Related Ppz1 Phosphatase. Molecular and Cellular Biology, 25(19), 8683-8692. doi:10.1128/mcb.25.19.8683-8692.2005
Stark, M. (2004). Protein phosphorylation and dephosphorylation. Metabolism and Molecular Physiology of Saccharomyces Cerevisiae, 2nd Edition, 284-375. doi:10.1201/9780203503867.ch8
Schüller, C., Brewster, J. L., Alexander, M. R., Gustin, M. C., & Ruis, H. (1994). The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. The EMBO Journal, 13(18), 4382-4389. doi:10.1002/j.1460-2075.1994.tb06758.x
Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., … Brown, P. O. (2000). Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes. Molecular Biology of the Cell, 11(12), 4241-4257. doi:10.1091/mbc.11.12.4241
Causton, H. C., Ren, B., Koh, S. S., Harbison, C. T., Kanin, E., Jennings, E. G., … Young, R. A. (2001). Remodeling of Yeast Genome Expression in Response to Environmental Changes. Molecular Biology of the Cell, 12(2), 323-337. doi:10.1091/mbc.12.2.323
Schüller, C., Mamnun, Y. M., Mollapour, M., Krapf, G., Schuster, M., Bauer, B. E., … Kuchler, K. (2004). Global Phenotypic Analysis and Transcriptional Profiling Defines the Weak Acid Stress Response Regulon in Saccharomyces cerevisiae. Molecular Biology of the Cell, 15(2), 706-720. doi:10.1091/mbc.e03-05-0322
Mollapour, M., & Piper, P. W. (2007). Hog1 Mitogen-Activated Protein Kinase Phosphorylation Targets the Yeast Fps1 Aquaglyceroporin for Endocytosis, Thereby Rendering Cells Resistant to Acetic Acid. Molecular and Cellular Biology, 27(18), 6446-6456. doi:10.1128/mcb.02205-06
Yenush, L. (2002). The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. The EMBO Journal, 21(5), 920-929. doi:10.1093/emboj/21.5.920
Winzeler, E. A. (1999). Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis. Science, 285(5429), 901-906. doi:10.1126/science.285.5429.901
Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Véronneau, S., … André, B. (2002). Functional profiling of the Saccharomyces cerevisiae genome. Nature, 418(6896), 387-391. doi:10.1038/nature00935
Mollapour, M., Fong, D., Balakrishnan, K., Harris, N., Thompson, S., Schüller, C., … Piper, P. W. (2004). Screening the yeast deletant mutant collection for hypersensitivity and hyper-resistance to sorbate, a weak organic acid food preservative. Yeast, 21(11), 927-946. doi:10.1002/yea.1141
Kawahata, M., Masaki, K., Fujii, T., & Iefuji, H. (2006). Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids inSaccharomyces cerevisiaecultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Research, 6(6), 924-936. doi:10.1111/j.1567-1364.2006.00089.x
Mira, N. P., Palma, M., Guerreiro, J. F., & Sá-Correia, I. (2010). Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microbial Cell Factories, 9(1), 79. doi:10.1186/1475-2859-9-79
Bauer, B. E., Rossington, D., Mollapour, M., Mamnun, Y., Kuchler, K., & Piper, P. W. (2003). Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants. European Journal of Biochemistry, 270(15), 3189-3195. doi:10.1046/j.1432-1033.2003.03701.x
Piper, P. (1998). The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. The EMBO Journal, 17(15), 4257-4265. doi:10.1093/emboj/17.15.4257
Klemm, R. W., Ejsing, C. S., Surma, M. A., Kaiser, H.-J., Gerl, M. J., Sampaio, J. L., … Simons, K. (2009). Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. The Journal of Cell Biology, 185(4), 601-612. doi:10.1083/jcb.200901145
Brett, C. L., Tukaye, D. N., Mukherjee, S., & Rao, R. (2005). The Yeast Endosomal Na+(K+)/H+ Exchanger Nhx1 Regulates Cellular pH to Control Vesicle Trafficking. Molecular Biology of the Cell, 16(3), 1396-1405. doi:10.1091/mbc.e04-11-0999
Krebs, H. A., Wiggins, D., Stubbs, M., Sols, A., & Bedoya, F. (1983). Studies on the mechanism of the antifungal action of benzoate. Biochemical Journal, 214(3), 657-663. doi:10.1042/bj2140657
PORTILLO, F., & SERRANO, R. (1989). Growth control strength and active site of yeast plasma membrane ATPase studied by site-directed mutagenesis. European Journal of Biochemistry, 186(3), 501-507. doi:10.1111/j.1432-1033.1989.tb15235.x
Mulet, J. M., Leube, M. P., Kron, S. J., Rios, G., Fink, G. R., & Serrano, R. (1999). A Novel Mechanism of Ion Homeostasis and Salt Tolerance in Yeast: the Hal4 and Hal5 Protein Kinases Modulate the Trk1-Trk2 Potassium Transporter. Molecular and Cellular Biology, 19(5), 3328-3337. doi:10.1128/mcb.19.5.3328
Simoes, T., Mira, N. P., Fernandes, A. R., & Sa-Correia, I. (2006). The SPI1 Gene, Encoding a Glycosylphosphatidylinositol-Anchored Cell Wall Protein, Plays a Prominent Role in the Development of Yeast Resistance to Lipophilic Weak-Acid Food Preservatives. Applied and Environmental Microbiology, 72(11), 7168-7175. doi:10.1128/aem.01476-06
Chattopadhyay, S., Muzaffar, N. E., Sherman, F., & Pearce, D. A. (2000). The Yeast Model for Batten Disease: Mutations in btn1, btn2, and hsp30 Alter pH Homeostasis. Journal of Bacteriology, 182(22), 6418-6423. doi:10.1128/jb.182.22.6418-6423.2000
Tenreiro, S., Nunes, P. A., Viegas, C. A., Neves, M. S., Teixeira, M. C., Cabral, M. G., & Sá-Correia, I. (2002). AQR1 Gene (ORF YNL065w) Encodes a Plasma Membrane Transporter of the Major Facilitator Superfamily That Confers Resistance to Short-Chain Monocarboxylic Acids and Quinidine in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 292(3), 741-748. doi:10.1006/bbrc.2002.6703
Giannattasio, S., Guaragnella, N., Corte-Real, M., Passarella, S., & Marra, E. (2005). Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death. Gene, 354, 93-98. doi:10.1016/j.gene.2005.03.030
Ludovico, P., Rodrigues, F., Almeida, A., Silva, M. T., Barrientos, A., & Côrte-Real, M. (2002). Cytochrome c Release and Mitochondria Involvement in Programmed Cell Death Induced by Acetic Acid in Saccharomyces cerevisiae. Molecular Biology of the Cell, 13(8), 2598-2606. doi:10.1091/mbc.e01-12-0161
Guarente, L., Yocum, R. R., & Gifford, P. (1982). A GAL10-CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site. Proceedings of the National Academy of Sciences, 79(23), 7410-7414. doi:10.1073/pnas.79.23.7410
Baker Brachmann, C., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter, P., & Boeke, J. D. (1998). Designer deletion strains derived fromSaccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast, 14(2), 115-132. doi:10.1002/(sici)1097-0061(19980130)14:2<115::aid-yea204>3.0.co;2-2
Huh, W.-K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S., & O’Shea, E. K. (2003). Global analysis of protein localization in budding yeast. Nature, 425(6959), 686-691. doi:10.1038/nature02026
Dever, T. E., Feng, L., Wek, R. C., Cigan, A. M., Donahue, T. F., & Hinnebusch, A. G. (1992). Phosphorylation of initiation factor 2α by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell, 68(3), 585-596. doi:10.1016/0092-8674(92)90193-g
Sherman, F. (1991). [1] Getting started with yeast. Methods in Enzymology, 3-21. doi:10.1016/0076-6879(91)94004-v
Schiestl, R. H., & Gietz, R. D. (1989). High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Current Genetics, 16(5-6), 339-346. doi:10.1007/bf00340712
Carlson, M., & Botstein, D. (1982). Two differentially regulated mRNAs with different 5′ ends encode secreted and intracellular forms of yeast invertase. Cell, 28(1), 145-154. doi:10.1016/0092-8674(82)90384-1
Wek, R. C., Cannon, J. F., Dever, T. E., & Hinnebusch, A. G. (1992). Truncated protein phosphatase GLC7 restores translational activation of GCN4 expression in yeast mutants defective for the eIF-2 alpha kinase GCN2. Molecular and Cellular Biology, 12(12), 5700-5710. doi:10.1128/mcb.12.12.5700
Hill, J. E., Myers, A. M., Koerner, T. J., & Tzagoloff, A. (1986). Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast, 2(3), 163-167. doi:10.1002/yea.320020304
Elledge, S. J., & Davis, R. W. (1988). A family of versatile centromeric vectors designed for use in the sectoring-shuffle mutagenesis assay in Saccharomyces cerevisiae. Gene, 70(2), 303-312. doi:10.1016/0378-1119(88)90202-8
Sarkar, S., Azad, A. K., & Hopper, A. K. (1999). Nuclear tRNA aminoacylation and its role in nuclear export of endogenous tRNAs in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 96(25), 14366-14371. doi:10.1073/pnas.96.25.14366
Whitney, M. L., Hurto, R. L., Shaheen, H. H., & Hopper, A. K. (2007). Rapid and Reversible Nuclear Accumulation of Cytoplasmic tRNA in Response to Nutrient Availability. Molecular Biology of the Cell, 18(7), 2678-2686. doi:10.1091/mbc.e07-01-0006
Horák, J. (1997). Yeast nutrient transporters. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1331(1), 41-79. doi:10.1016/s0304-4157(96)00015-9
STEIN, W. D. (1986). The Cotransport Systems: Two Substrates That Are Carried on a Single Transporter. Transport and Diffusion Across Cell Membranes, 363-474. doi:10.1016/b978-0-12-664660-3.50010-7
Regenberg, B., Düring-Olsen, L., Kielland-Brandt, M. C., & Holmberg, S. (1999). Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae. Current Genetics, 36(6), 317-328. doi:10.1007/s002940050506
Hinnebusch, A. G. (2005). TRANSLATIONAL REGULATION OFGCN4AND THE GENERAL AMINO ACID CONTROL OF YEAST. Annual Review of Microbiology, 59(1), 407-450. doi:10.1146/annurev.micro.59.031805.133833
Natarajan, K., Meyer, M. R., Jackson, B. M., Slade, D., Roberts, C., Hinnebusch, A. G., & Marton, M. J. (2001). Transcriptional Profiling Shows that Gcn4p Is a Master Regulator of Gene Expression during Amino Acid Starvation in Yeast. Molecular and Cellular Biology, 21(13), 4347-4368. doi:10.1128/mcb.21.13.4347-4368.2001
Goossens, A., Dever, T. E., Pascual-Ahuir, A., & Serrano, R. (2001). The Protein Kinase Gcn2p Mediates Sodium Toxicity in Yeast. Journal of Biological Chemistry, 276(33), 30753-30760. doi:10.1074/jbc.m102960200
Vilela, C., & McCarthy, J. E. G. (2003). Regulation of fungal gene expression via short open reading frames in the mRNA 5′untranslated region. Molecular Microbiology, 49(4), 859-867. doi:10.1046/j.1365-2958.2003.03622.x
Hinnebusch, A. G., & Natarajan, K. (2002). Gcn4p, a Master Regulator of Gene Expression, Is Controlled at Multiple Levels by Diverse Signals of Starvation and Stress. Eukaryotic Cell, 1(1), 22-32. doi:10.1128/ec.01.1.22-32.2002
Wek, R. C., Jiang, H.-Y., & Anthony, T. G. (2006). Coping with stress: eIF2 kinases and translational control. Biochemical Society Transactions, 34(1), 7-11. doi:10.1042/bst0340007
Lageix, S., Lanet, E., Pouch-Pélissier, M.-N., Espagnol, M.-C., Robaglia, C., Deragon, J.-M., & Pélissier, T. (2008). Arabidopsis eIF2α kinase GCN2 is essential for growth in stress conditions and is activated by wounding. BMC Plant Biology, 8(1), 134. doi:10.1186/1471-2229-8-134
Mueller, P. P., & Hinnebusch, A. G. (1986). Multiple upstream AUG codons mediate translational control of GCN4. Cell, 45(2), 201-207. doi:10.1016/0092-8674(86)90384-3
Lauwers, E., Erpapazoglou, Z., Haguenauer-Tsapis, R., & André, B. (2010). The ubiquitin code of yeast permease trafficking. Trends in Cell Biology, 20(4), 196-204. doi:10.1016/j.tcb.2010.01.004
De Craene, J.-O., Soetens, O., & André, B. (2001). The Npr1 Kinase Controls Biosynthetic and Endocytic Sorting of the Yeast Gap1 Permease. Journal of Biological Chemistry, 276(47), 43939-43948. doi:10.1074/jbc.m102944200
Omura, F., & Kodama, Y. (2004). The N-terminal domain of yeast Bap2 permease is phosphorylated dependently on the Npr1 kinase in response to starvation. FEMS Microbiology Letters, 230(2), 227-234. doi:10.1016/s0378-1097(03)00918-2
Hunter, T., & Plowman, G. D. (1997). The protein kinases of budding yeast: six score and more. Trends in Biochemical Sciences, 22(1), 18-22. doi:10.1016/s0968-0004(96)10068-2
Goossens, A., de la Fuente, N., Forment, J., Serrano, R., & Portillo, F. (2000). Regulation of Yeast H+-ATPase by Protein Kinases Belonging to a Family Dedicated to Activation of Plasma Membrane Transporters. Molecular and Cellular Biology, 20(20), 7654-7661. doi:10.1128/mcb.20.20.7654-7661.2000
Cvijović, M., Dalevi, D., Bilsland, E., Kemp, G. J., & Sunnerhagen, P. (2007). Identification of putative regulatory upstream ORFs in the yeast genome using heuristics and evolutionary conservation. BMC Bioinformatics, 8(1), 295. doi:10.1186/1471-2105-8-295
Zaborske, J. M., Narasimhan, J., Jiang, L., Wek, S. A., Dittmar, K. A., Freimoser, F., … Wek, R. C. (2009). Genome-wide Analysis of tRNA Charging and Activation of the eIF2 Kinase Gcn2p. Journal of Biological Chemistry, 284(37), 25254-25267. doi:10.1074/jbc.m109.000877
Weitzel, G., Pilatus, U., & Rensing, L. (1987). The cytoplasmic pH, ATP content and total protein synthesis rate during heat-shock protein inducing treatments in yeast. Experimental Cell Research, 170(1), 64-79. doi:10.1016/0014-4827(87)90117-0
[-]