- -

[Fe(TPT)2/3{MI(CN)2}2]·nSolv (MI=Ag, Au): new bimetallic porous coordination polymers with spin-crossover properties

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

[Fe(TPT)2/3{MI(CN)2}2]·nSolv (MI=Ag, Au): new bimetallic porous coordination polymers with spin-crossover properties

Mostrar el registro completo del ítem

Arcis-Castillo, Z.; Muñoz Roca, MDC.; Molnár, G.; Bousseksou, A.; Real, JA. (2013). [Fe(TPT)2/3{MI(CN)2}2]·nSolv (MI=Ag, Au): new bimetallic porous coordination polymers with spin-crossover properties. Chemistry - A European Journal. 19(21):6851-6861. https://doi.org/10.1002/chem.201203559

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/33766

Ficheros en el ítem

Metadatos del ítem

Título: [Fe(TPT)2/3{MI(CN)2}2]·nSolv (MI=Ag, Au): new bimetallic porous coordination polymers with spin-crossover properties
Autor: Arcis-Castillo, Zulema Muñoz Roca, María del Carmen Molnár, Gábor Bousseksou, Azzedine Real, José Antonio
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
Two new heterobimetallic porous coordination polymers with the formula [Fe(TPT)2/3{MI(CN)2}2]¿nSolv (TPT=[(2,4,6-tris(4-pyridyl)-1,3,5-triazine]; MI=Ag (nSolv=0, 1¿MeOH, 2¿CH2Cl2), Au (nSolv=0, 2¿CH2Cl2)) have been synthesized ...[+]
Palabras clave: Coordination polymers , Iron , Porosity , Self-assembly , Spin crossover
Derechos de uso: Cerrado
Fuente:
Chemistry - A European Journal. (issn: 0947-6539 )
DOI: 10.1002/chem.201203559
Editorial:
Wiley-VCH Verlag
Versión del editor: http://onlinelibrary.wiley.com/doi/10.1002/chem.201203559/suppinfo
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CTQ2010-18414/ES/MATERIALES MULTIPROPIEDAD BASADOS EN EL FENOMENO "SPIN CROSSOVER": MEMORIAS Y SENSORES MOLECULARES/
info:eu-repo/grantAgreement/GVA//ACOMP%2F2012%2F233/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F049/
Agradecimientos:
This work was supported by the Spanish Ministerio de Ciencia e Innovacion (MICINN, presently the Ministerio de Economia y Competitividad) and FEDER funds (CTQ2010-18414), the Generalitat Valenciana through projects ...[+]
Tipo: Artículo

References

Das, M. C., Xiang, S., Zhang, Z., & Chen, B. (2011). Funktionelle Gemischtmetall-organische Gerüste mit Metalloliganden. Angewandte Chemie, 123(45), 10696-10707. doi:10.1002/ange.201101534

Das, M. C., Xiang, S., Zhang, Z., & Chen, B. (2011). Functional Mixed Metal-Organic Frameworks with Metalloligands. Angewandte Chemie International Edition, 50(45), 10510-10520. doi:10.1002/anie.201101534

Kitagawa, S., Kitaura, R., & Noro, S. (2004). Funktionale poröse Koordinationspolymere. Angewandte Chemie, 116(18), 2388-2430. doi:10.1002/ange.200300610 [+]
Das, M. C., Xiang, S., Zhang, Z., & Chen, B. (2011). Funktionelle Gemischtmetall-organische Gerüste mit Metalloliganden. Angewandte Chemie, 123(45), 10696-10707. doi:10.1002/ange.201101534

Das, M. C., Xiang, S., Zhang, Z., & Chen, B. (2011). Functional Mixed Metal-Organic Frameworks with Metalloligands. Angewandte Chemie International Edition, 50(45), 10510-10520. doi:10.1002/anie.201101534

Kitagawa, S., Kitaura, R., & Noro, S. (2004). Funktionale poröse Koordinationspolymere. Angewandte Chemie, 116(18), 2388-2430. doi:10.1002/ange.200300610

Kitagawa, S., Kitaura, R., & Noro, S. (2004). Functional Porous Coordination Polymers. Angewandte Chemie International Edition, 43(18), 2334-2375. doi:10.1002/anie.200300610

KITAGAWA, S., & MATSUDA, R. (2007). Chemistry of coordination space of porous coordination polymers. Coordination Chemistry Reviews, 251(21-24), 2490-2509. doi:10.1016/j.ccr.2007.07.009

Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b

Czaja, A. U., Trukhan, N., & Müller, U. (2009). Industrial applications of metal–organic frameworks. Chemical Society Reviews, 38(5), 1284. doi:10.1039/b804680h

Rocha, J., Carlos, L. D., Paz, F. A. A., & Ananias, D. (2011). Luminescent multifunctional lanthanides-based metal–organic frameworks. Chem. Soc. Rev., 40(2), 926-940. doi:10.1039/c0cs00130a

Wang, C., & Lin, W. (2011). Diffusion-Controlled Luminescence Quenching in Metal−Organic Frameworks. Journal of the American Chemical Society, 133(12), 4232-4235. doi:10.1021/ja111197d

Liu, D., Huxford, R. C., & Lin, W. (2011). Phosphorescent Nanoscale Coordination Polymers as Contrast Agents for Optical Imaging. Angewandte Chemie, 123(16), 3780-3784. doi:10.1002/ange.201008277

Liu, D., Huxford, R. C., & Lin, W. (2011). Phosphorescent Nanoscale Coordination Polymers as Contrast Agents for Optical Imaging. Angewandte Chemie International Edition, 50(16), 3696-3700. doi:10.1002/anie.201008277

Stylianou, K. C., Heck, R., Chong, S. Y., Bacsa, J., Jones, J. T. A., Khimyak, Y. Z., … Rosseinsky, M. J. (2010). A Guest-Responsive Fluorescent 3D Microporous Metal−Organic Framework Derived from a Long-Lifetime Pyrene Core. Journal of the American Chemical Society, 132(12), 4119-4130. doi:10.1021/ja906041f

Xie, Z., Ma, L., deKrafft, K. E., Jin, A., & Lin, W. (2010). Porous Phosphorescent Coordination Polymers for Oxygen Sensing. Journal of the American Chemical Society, 132(3), 922-923. doi:10.1021/ja909629f

Maspoch, D., Ruiz-Molina, D., & Veciana, J. (2007). Old materials with new tricks: multifunctional open-framework materials. Chemical Society Reviews, 36(5), 770. doi:10.1039/b501600m

Dechambenoit, P., & Long, J. R. (2011). Microporous magnets. Chemical Society Reviews, 40(6), 3249. doi:10.1039/c0cs00167h

Avendano, C., Zhang, Z., Ota, A., Zhao, H., & Dunbar, K. R. (2011). Dramatically Different Conductivity Properties of Metal-Organic Framework Polymorphs of Tl(TCNQ): An Unexpected Room-Temperature Crystal-to-Crystal Phase Transition. Angewandte Chemie, 123(29), 6673-6677. doi:10.1002/ange.201100372

Avendano, C., Zhang, Z., Ota, A., Zhao, H., & Dunbar, K. R. (2011). Dramatically Different Conductivity Properties of Metal-Organic Framework Polymorphs of Tl(TCNQ): An Unexpected Room-Temperature Crystal-to-Crystal Phase Transition. Angewandte Chemie International Edition, 50(29), 6543-6547. doi:10.1002/anie.201100372

Shimomura, S., & Kitagawa, S. (2011). Soft porous crystal meets TCNQ: charge transfer-type porous coordination polymers. Journal of Materials Chemistry, 21(15), 5537. doi:10.1039/c1jm10208g

Shimomura, S., Yanai, N., Matsuda, R., & Kitagawa, S. (2011). Impact of Metal-Ion Dependence on the Porous and Electronic Properties of TCNQ-Dianion-Based Porous Coordination Polymers. Inorganic Chemistry, 50(1), 172-177. doi:10.1021/ic1015498

Shigematsu, A., Yamada, T., & Kitagawa, H. (2011). Wide Control of Proton Conductivity in Porous Coordination Polymers. Journal of the American Chemical Society, 133(7), 2034-2036. doi:10.1021/ja109810w

Bureekaew, S., Horike, S., Higuchi, M., Mizuno, M., Kawamura, T., Tanaka, D., … Kitagawa, S. (2009). One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity. Nature Materials, 8(10), 831-836. doi:10.1038/nmat2526

Goodwin, H. A. (1976). Spin Transitions in six-coordinate iron(II) complexes. Coordination Chemistry Reviews, 18(3), 293-325. doi:10.1016/s0010-8545(00)80430-0

Gütlich, P. (s. f.). Spin crossover in iron(II)-complexes. Metal Complexes, 83-195. doi:10.1007/bfb0111269

Konig, E., Ritter, G., & Kulshreshtha, S. K. (1985). The nature of spin-state transitions in solid complexes of iron(II) and the interpretation of some associated phenomena. Chemical Reviews, 85(3), 219-234. doi:10.1021/cr00067a003

Hauser, A. (1995). Intersystem Crossing in Iron(II) Coordination Compounds: A Model Process Between Classical and Quantum Mechanical Behaviour. Comments on Inorganic Chemistry, 17(1), 17-40. doi:10.1080/02603599508035780

König, E. (1991). Nature and dynamics of the spin-state interconversion in metal complexes. Structure and Bonding, 51-152. doi:10.1007/3-540-53499-7_2

Gütlich, P., Hauser, A., & Spiering, H. (1994). Thermisch und optisch schaltbare Eisen(II)-Komplexe. Angewandte Chemie, 106(20), 2109-2141. doi:10.1002/ange.19941062006

Gütlich, P., Hauser, A., & Spiering, H. (1994). Thermal and Optical Switching of Iron(II) Complexes. Angewandte Chemie International Edition in English, 33(20), 2024-2054. doi:10.1002/anie.199420241

Sato, O. (2003). Optically Switchable Molecular Solids:  Photoinduced Spin-Crossover, Photochromism, and Photoinduced Magnetization. Accounts of Chemical Research, 36(9), 692-700. doi:10.1021/ar020242z

Real, J. A., Gaspar, A. B., Niel, V., & Muñoz, M. C. (2003). Communication between iron(II) building blocks in cooperative spin transition phenomena. Coordination Chemistry Reviews, 236(1-2), 121-141. doi:10.1016/s0010-8545(02)00220-5

Top. Curr. Chem. 2004 233-235

Real, J. A., Gaspar, A. B., & Muñoz, M. C. (2005). Thermal, pressure and light switchable spin-crossover materials. Dalton Transactions, (12), 2062. doi:10.1039/b501491c

Halcrow, M. A. (2007). The spin-states and spin-transitions of mononuclear iron(II) complexes of nitrogen-donor ligands. Polyhedron, 26(14), 3523-3576. doi:10.1016/j.poly.2007.03.033

NIHEI, M., SHIGA, T., MAEDA, Y., & OSHIO, H. (2007). Spin crossover iron(III) complexes. Coordination Chemistry Reviews, 251(21-24), 2606-2621. doi:10.1016/j.ccr.2007.08.007

Gamez, P., Costa, J. S., Quesada, M., & Aromí, G. (2009). Iron Spin-Crossover compounds: from fundamental studies to practical applications. Dalton Transactions, (38), 7845. doi:10.1039/b908208e

Halcrow, M. A. (2009). Iron(II) complexes of 2,6-di(pyrazol-1-yl)pyridines—A versatile system for spin-crossover research. Coordination Chemistry Reviews, 253(21-22), 2493-2514. doi:10.1016/j.ccr.2009.07.009

Olguín, J., & Brooker, S. (2011). Spin crossover active iron(II) complexes of selected pyrazole-pyridine/pyrazine ligands. Coordination Chemistry Reviews, 255(1-2), 203-240. doi:10.1016/j.ccr.2010.08.002

Bousseksou, A., Molnár, G., Salmon, L., & Nicolazzi, W. (2011). Molecular spin crossover phenomenon: recent achievements and prospects. Chemical Society Reviews, 40(6), 3313. doi:10.1039/c1cs15042a

Real, J. A., Andres, E., Munoz, M. C., Julve, M., Granier, T., Bousseksou, A., & Varret, F. (1995). Spin Crossover in a Catenane Supramolecular System. Science, 268(5208), 265-267. doi:10.1126/science.268.5208.265

Halder, G. J. (2002). Guest-Dependent Spin Crossover in a Nanoporous Molecular Framework Material. Science, 298(5599), 1762-1765. doi:10.1126/science.1075948

Neville, S. M., Moubaraki, B., Murray, K. S., & Kepert, C. J. (2007). A Thermal Spin Transition in a Nanoporous Iron(II) Coordination Framework Material. Angewandte Chemie, 119(12), 2105-2108. doi:10.1002/ange.200603977

Neville, S. M., Moubaraki, B., Murray, K. S., & Kepert, C. J. (2007). A Thermal Spin Transition in a Nanoporous Iron(II) Coordination Framework Material. Angewandte Chemie International Edition, 46(12), 2059-2062. doi:10.1002/anie.200603977

Neville, S. M., Halder, G. J., Chapman, K. W., Duriska, M. B., Moubaraki, B., Murray, K. S., & Kepert, C. J. (2009). Guest Tunable Structure and Spin Crossover Properties in a Nanoporous Coordination Framework Material. Journal of the American Chemical Society, 131(34), 12106-12108. doi:10.1021/ja905360g

Neville, S. M., Halder, G. J., Chapman, K. W., Duriska, M. B., Southon, P. D., Cashion, J. D., … Kepert, C. J. (2008). Single-Crystal to Single-Crystal Structural Transformation and Photomagnetic Properties of a Porous Iron(II) Spin-Crossover Framework. Journal of the American Chemical Society, 130(9), 2869-2876. doi:10.1021/ja077958f

Halder, G. J., Chapman, K. W., Neville, S. M., Moubaraki, B., Murray, K. S., Létard, J.-F., & Kepert, C. J. (2008). Elucidating the Mechanism of a Two-Step Spin Transition in a Nanoporous Metal−Organic Framework. Journal of the American Chemical Society, 130(51), 17552-17562. doi:10.1021/ja8068038

Hofmann, K. A., & Küspert, F. (1897). Verbindungen von Kohlenwasserstoffen mit Metallsalzen. Zeitschrift für anorganische Chemie, 15(1), 204-207. doi:10.1002/zaac.18970150118

POWELL, H. M., & RAYNER, J. H. (1949). Clathrate Compound Formed by Benzene with an Ammonia–Nickel Cyanide Complex. Nature, 163(4145), 566-567. doi:10.1038/163566a0

Iwamoto, T. (1996). Past, present and future of the clathrate inclusion compounds built of cyanometallate hosts. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 24(1-2), 61-132. doi:10.1007/bf01053426

Nishikiori, S., Yoshikawa, H., Sano, Y., & Iwamoto, T. (2005). Inorganic−Organic Hybrid Molecular Architectures of Cyanometalate Host and Organic Guest Systems:  Specific Behavior of the Guests. Accounts of Chemical Research, 38(4), 227-234. doi:10.1021/ar0401707

Niel, V., Martinez-Agudo, J. M., Muñoz, M. C., Gaspar, A. B., & Real, J. A. (2001). Cooperative Spin Crossover Behavior in Cyanide-Bridged Fe(II)−M(II) Bimetallic 3D Hofmann-like Networks (M = Ni, Pd, and Pt). Inorganic Chemistry, 40(16), 3838-3839. doi:10.1021/ic010259y

Rodríguez-Velamazán, J. A., González, M. A., Real, J. A., Castro, M., Muñoz, M. C., Gaspar, A. B., … Kitagawa, S. (2012). A Switchable Molecular Rotator: Neutron Spectroscopy Study on a Polymeric Spin-Crossover Compound. Journal of the American Chemical Society, 134(11), 5083-5089. doi:10.1021/ja206228n

Ohba, M., Yoneda, K., Agustí, G., Muñoz, M.  Carme., Gaspar, A., Real, J., … Kitagawa, S. (2009). Bidirectional Chemo‐Switching of Spin State in a Microporous Framework. Angewandte Chemie, 121(26), 4861-4865. doi:10.1002/ange.200806039

Ohba, M., Yoneda, K., Agustí, G., Muñoz, M. C., Gaspar, A. B., Real, J. A., … Kitagawa, S. (2009). Bidirectional Chemo-Switching of Spin State in a Microporous Framework. Angewandte Chemie International Edition, 48(26), 4767-4771. doi:10.1002/anie.200806039

Boldog, I., Gaspar, A. B., Martínez, V., Pardo-Ibañez, P., Ksenofontov, V., Bhattacharjee, A., … Real, J. A. (2008). Spin-Crossover Nanocrystals with Magnetic, Optical, and Structural Bistability Near Room Temperature. Angewandte Chemie, 120(34), 6533-6537. doi:10.1002/ange.200801673

Boldog, I., Gaspar, A. B., Martínez, V., Pardo-Ibañez, P., Ksenofontov, V., Bhattacharjee, A., … Real, J. A. (2008). Spin-Crossover Nanocrystals with Magnetic, Optical, and Structural Bistability Near Room Temperature. Angewandte Chemie International Edition, 47(34), 6433-6437. doi:10.1002/anie.200801673

Cobo, S., Molnár, G., Real, J. A., & Bousseksou, A. (2006). Multilayer Sequential Assembly of Thin Films That Display Room-Temperature Spin Crossover with Hysteresis. Angewandte Chemie, 118(35), 5918-5921. doi:10.1002/ange.200601885

Cobo, S., Molnár, G., Real, J. A., & Bousseksou, A. (2006). Multilayer Sequential Assembly of Thin Films That Display Room-Temperature Spin Crossover with Hysteresis. Angewandte Chemie International Edition, 45(35), 5786-5789. doi:10.1002/anie.200601885

Molnár, G., Cobo, S., Real, J. A., Carcenac, F., Daran, E., Vieu, C., & Bousseksou, A. (2007). A Combined Top-Down/Bottom-Up Approach for the Nanoscale Patterning of Spin-Crossover Coordination Polymers. Advanced Materials, 19(16), 2163-2167. doi:10.1002/adma.200700448

Southon, P. D., Liu, L., Fellows, E. A., Price, D. J., Halder, G. J., Chapman, K. W., … Kepert, C. J. (2009). Dynamic Interplay between Spin-Crossover and Host−Guest Function in a Nanoporous Metal−Organic Framework Material. Journal of the American Chemical Society, 131(31), 10998-11009. doi:10.1021/ja902187d

Agustí, G., Ohtani, R., Yoneda, K., Gaspar, A. B., Ohba, M., Sánchez-Royo, J. F., … Real, J. A. (2009). Oxidative Addition of Halogens on Open Metal Sites in a Microporous Spin-Crossover Coordination Polymer. Angewandte Chemie, 121(47), 9106-9109. doi:10.1002/ange.200904379

Agustí, G., Ohtani, R., Yoneda, K., Gaspar, A. B., Ohba, M., Sánchez-Royo, J. F., … Real, J. A. (2009). Oxidative Addition of Halogens on Open Metal Sites in a Microporous Spin-Crossover Coordination Polymer. Angewandte Chemie International Edition, 48(47), 8944-8947. doi:10.1002/anie.200904379

Ohtani, R., Yoneda, K., Furukawa, S., Horike, N., Kitagawa, S., Gaspar, A. B., … Ohba, M. (2011). Precise Control and Consecutive Modulation of Spin Transition Temperature Using Chemical Migration in Porous Coordination Polymers. Journal of the American Chemical Society, 133(22), 8600-8605. doi:10.1021/ja111674c

Muñoz, M. C., & Real, J. A. (2011). Thermo-, piezo-, photo- and chemo-switchable spin crossover iron(II)-metallocyanate based coordination polymers. Coordination Chemistry Reviews, 255(17-18), 2068-2093. doi:10.1016/j.ccr.2011.02.004

Batten, S. R., Hoskins, B. F., & Robson, R. (1995). Two Interpenetrating 3D Networks Which Generate Spacious Sealed-Off Compartments Enclosing of the Order of 20 Solvent Molecules in the Structures of Zn(CN)(NO3)(tpt)2/3.cntdot.solv (tpt = 2,4,6-tri(4-pyridyl)-1,3,5-triazine, solv = .apprx.3/4C2H2Cl4.cntdot.3/4CH3OH or .apprx.3/2CHCl3.cntdot.1/3CH3OH). Journal of the American Chemical Society, 117(19), 5385-5386. doi:10.1021/ja00124a032

Abrahams, B. F., Batten, S. R., Grannas, M. J., Hamit, H., Hoskins, B. F., & Robson, R. (1999). Ni(tpt)(NO3)2 – ein dreidimensionales, selbstverkettetes Netz mit der ungewöhnlichen (12,3)-Topologie. Angewandte Chemie, 111(10), 1538-1540. doi:10.1002/(sici)1521-3757(19990517)111:10<1538::aid-ange1538>3.0.co;2-2

Abrahams, B. F., Batten, S. R., Hamit, H., Hoskins, B. F., & Robson, R. (1996). A Cubic(3,4)-Connected Net with Large Cavities in Solvated[Cu3(tpt)4](ClO4)3(tpt= 2,4,6-Tri(4-pyridyl)-1,3,5-triazine). Angewandte Chemie International Edition in English, 35(15), 1690-1692. doi:10.1002/anie.199616901

Abrahams, B. F., Batten, S. R., Hamit, H., Hoskins, B. F., & Robson, R. (1996). A wellsian ‘three-dimensional’ racemate: eight interpenetrating, enantiomorphic (10,3)-a nets, four right- and four left-handed. Chem. Commun., (11), 1313-1314. doi:10.1039/cc9960001313

Abrahams, B. F., Batten, S. R., Grannas, M. J., Hamit, H., Hoskins, B. F., & Robson, R. (1999). Ni(tpt)(NO3)2—A Three-Dimensional Network with the Exceptional (12,3) Topology: A Self-Entangled Single Net. Angewandte Chemie International Edition, 38(10), 1475-1477. doi:10.1002/(sici)1521-3773(19990517)38:10<1475::aid-anie1475>3.0.co;2-3

Batten, S. R., Hoskins, B. F., Robson, R., Moubaraki, B., & Murray, K. S. (2000). An alternative to interpenetration whereby nets with large windows may achieve satisfactory space filling. Chemical Communications, (13), 1095-1096. doi:10.1039/b002193h

Biradha, K., & Fujita, M. (2002). Angewandte Chemie, 114(18), 3542-3545. doi:10.1002/1521-3757(20020916)114:18<3542::aid-ange3542>3.0.co;2-p

Biradha, K., & Fujita, M. (2002). A Springlike 3D-Coordination Network That Shrinks or Swells in a Crystal-to-Crystal Manner upon Guest Removal or Readsorption. Angewandte Chemie International Edition, 41(18), 3392-3395. doi:10.1002/1521-3773(20020916)41:18<3392::aid-anie3392>3.0.co;2-v

Ohmori, O., Kawano, M., & Fujita, M. (2004). Crystal-to-Crystal Guest Exchange of Large Organic Molecules within a 3D Coordination Network. Journal of the American Chemical Society, 126(50), 16292-16293. doi:10.1021/ja046478a

Dybtsev, D. N., Chun, H., & Kim, K. (2004). Three-dimensional metal–organic framework with (3,4)-connected net, synthesized from an ionic liquid medium. Chem. Commun., (14), 1594-1595. doi:10.1039/b403001j

Inokuma, Y., Arai, T., & Fujita, M. (2010). Networked molecular cages as crystalline sponges for fullerenes and other guests. Nature Chemistry, 2(9), 780-783. doi:10.1038/nchem.742

Sheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930

Jansen, M. (1987). Homoatomare d10-d10-Wechselwirkungen — Auswirkungen auf Struktur- und Stoffeigenschaften. Angewandte Chemie, 99(11), 1136-1149. doi:10.1002/ange.19870991106

Jansen, M. (1987). Homoatomic d10–d10 Interactions: Their Effects on Structure and Chemical and Physical Properties. Angewandte Chemie International Edition in English, 26(11), 1098-1110. doi:10.1002/anie.198710981

Slichter, C. P., & Drickamer, H. G. (1972). Pressure‐Induced Electronic Changes in Compounds of Iron. The Journal of Chemical Physics, 56(5), 2142-2160. doi:10.1063/1.1677511

Martin, J.-P., Zarembowitch, J., Bousseksou, A., Dworkin, A., Haasnoot, J. G., & Varret, F. (1994). Solid State Effects on Spin Transitions: Magnetic, Calorimetric, and Moessbauer-Effect Properties of [FexCo1-x(4,4’-bis-1,2,4-triazole)2(NCS)2].cntdot.H2O Mixed-Crystal Compounds. Inorganic Chemistry, 33(26), 6325-6333. doi:10.1021/ic00104a049

Sorai, M., Nakano, M., & Miyazaki, Y. (2006). Calorimetric Investigation of Phase Transitions Occurring in Molecule-Based Magnets†. Chemical Reviews, 106(3), 976-1031. doi:10.1021/cr960049g

Rodríguez-Velamazán, J. A., Castro, M., Palacios, E., Burriel, R., Kitazawa, T., & Kawasaki, T. (2007). A Two-Step Spin Transition with a Disordered Intermediate State in a New Two-Dimensional Coordination Polymer. The Journal of Physical Chemistry B, 111(6), 1256-1261. doi:10.1021/jp066010p

Kosone, T., Kachi-Terajima, C., Kanadani, C., Saito, T., & Kitazawa, T. (2008). Isotope Effect on Spin-crossover Transition in a New Two-dimensional Coordination Polymer [FeII(C5H5N)2][AuI(CN)2]2, [FeII(C5D5N)2][AuI(CN)2]2, and [FeII(C5H515N)2][AuI(CN)2]2. Chemistry Letters, 37(7), 754-755. doi:10.1246/cl.2008.754

Muñoz, M. C., Gaspar, A. B., Galet, A., & Real, J. A. (2007). Spin-Crossover Behavior in Cyanide-Bridged Iron(II)−Silver(I) Bimetallic 2D Hofmann-like Metal−Organic Frameworks. Inorganic Chemistry, 46(20), 8182-8192. doi:10.1021/ic700607x

Agustí, G., Muñoz, M. C., Gaspar, A. B., & Real, J. A. (2008). Spin-Crossover Behavior in Cyanide-bridged Iron(II)−Gold(I) Bimetallic 2D Hofmann-like Metal−Organic Frameworks§. Inorganic Chemistry, 47(7), 2552-2561. doi:10.1021/ic701865k

Rodríguez-Velamazán, J. A., Carbonera, C., Castro, M., Palacios, E., Kitazawa, T., Létard, J.-F., & Burriel, R. (2010). Two-Step Thermal Spin Transition and LIESST Relaxation of the Polymeric Spin-Crossover Compounds Fe(X-py)2[Ag(CN)2]2 (X=H, 3-methyl, 4-methyl, 3,4-dimethyl, 3-Cl). Chemistry - A European Journal, 16(29), 8785-8796. doi:10.1002/chem.201000433

Galet, A., Niel, V., Muñoz, M. C., & Real, J. A. (2003). Synergy between Spin Crossover and Metallophilicity in Triple Interpenetrated 3D Nets with the NbO Structure Type. Journal of the American Chemical Society, 125(47), 14224-14225. doi:10.1021/ja0377347

Galet, A., Muñoz, M. C., Martínez, V., & Real, J. A. (2004). Supramolecular isomerism in spin crossover networks with aurophilic interactions. Chem. Commun., (20), 2268-2269. doi:10.1039/b409974e

Niel, V., Thompson, A. L., Muñoz, M. C., Galet, A., Goeta, A. E., & Real, J. A. (2003). Crystalline-State Reaction with Allosteric Effect in Spin-Crossover, Interpenetrated Networks with Magnetic and Optical Bistability. Angewandte Chemie, 115(32), 3890-3893. doi:10.1002/ange.200351853

Niel, V., Thompson, A. L., Muñoz, M. C., Galet, A., Goeta, A. E., & Real, J. A. (2003). Crystalline-State Reaction with Allosteric Effect in Spin-Crossover, Interpenetrated Networks with Magnetic and Optical Bistability. Angewandte Chemie International Edition, 42(32), 3760-3763. doi:10.1002/anie.200351853

Agustí, G., Cobo, S., Gaspar, A. B., Molnár, G., Moussa, N. O., Szilágyi, P. Á., … Bousseksou, A. (2008). Thermal and Light-Induced Spin Crossover Phenomena in New 3D Hofmann-Like Microporous Metalorganic Frameworks Produced As Bulk Materials and Nanopatterned Thin Films. Chemistry of Materials, 20(21), 6721-6732. doi:10.1021/cm8019878

Muñoz-Lara, F. J., Gaspar, A. B., Muñoz, M. C., Arai, M., Kitagawa, S., Ohba, M., & Real, J. A. (2012). Sequestering Aromatic Molecules with a Spin-Crossover FeII Microporous Coordination Polymer. Chemistry - A European Journal, 18(26), 8013-8018. doi:10.1002/chem.201200377

Bartual-Murgui, C., Ortega-Villar, N. A., Shepherd, H. J., Muñoz, M. C., Salmon, L., Molnár, G., … Real, J. A. (2011). Enhanced porosity in a new 3D Hofmann-like network exhibiting humidity sensitive cooperative spin transitions at room temperature. Journal of Materials Chemistry, 21(20), 7217. doi:10.1039/c0jm04387g

Bartual-Murgui, C., Salmon, L., Akou, A., Ortega-Villar, N. A., Shepherd, H. J., Muñoz, M. C., … Bousseksou, A. (2011). Synergetic Effect of Host-Guest Chemistry and Spin Crossover in 3D Hofmann-like Metal-Organic Frameworks [Fe(bpac)M(CN)4] (M=Pt, Pd, Ni). Chemistry - A European Journal, 18(2), 507-516. doi:10.1002/chem.201102357

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem