- -

Sunlight-assisted fenton reaction catalyzed by gold supported on diamond nanoparticles as pretreatment for biological degradation of aqueous phenol solutions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sunlight-assisted fenton reaction catalyzed by gold supported on diamond nanoparticles as pretreatment for biological degradation of aqueous phenol solutions

Mostrar el registro completo del ítem

Navalón Oltra, S.; Martín González, R.; Alvaro Rodríguez, MM.; García Gómez, H. (2011). Sunlight-assisted fenton reaction catalyzed by gold supported on diamond nanoparticles as pretreatment for biological degradation of aqueous phenol solutions. ChemSusChem. 4(5):650-657. https://doi.org/10.1002/cssc.201000453

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/33767

Ficheros en el ítem

Metadatos del ítem

Título: Sunlight-assisted fenton reaction catalyzed by gold supported on diamond nanoparticles as pretreatment for biological degradation of aqueous phenol solutions
Autor: Navalón Oltra, Sergio Martín González, Roberto Alvaro Rodríguez, Maria Mercedes García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
Gold nanoparticles supported on Fenton-treated diamond nanoparticles (Au/DNPs) have been reported as one of the most efficient solid catalysts effecting the Fenton reaction, achieving a turnover number (TON) as high as 321 ...[+]
Palabras clave: Fenton reaction , Gold , Heterogeneous catalysis , Nanoparticles , Photolysis
Derechos de uso: Cerrado
Fuente:
ChemSusChem. (issn: 1864-5631 )
DOI: 10.1002/cssc.201000453
Editorial:
Wiley-VCH Verlag
Versión del editor: http://onlinelibrary.wiley.com/doi/10.1002/cssc.201000453/full
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CTQ2009-11583/ES/Ruptura Fotocaliftica del Agua con Luz Solar/
Agradecimientos:
Financial support by the Spanish DGI (CTQ-2009-11587) is gratefully acknowledged. SN thanks the Technical University of Valencia for a postgraduate research contract (Cantera Program).
Tipo: Artículo

References

Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2010). Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst. Angewandte Chemie, 122(45), 8581-8585. doi:10.1002/ange.201003216

Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2010). Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst. Angewandte Chemie International Edition, 49(45), 8403-8407. doi:10.1002/anie.201003216

Navalon, S., Alvaro, M., & Garcia, H. (2010). Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Applied Catalysis B: Environmental, 99(1-2), 1-26. doi:10.1016/j.apcatb.2010.07.006 [+]
Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2010). Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst. Angewandte Chemie, 122(45), 8581-8585. doi:10.1002/ange.201003216

Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2010). Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst. Angewandte Chemie International Edition, 49(45), 8403-8407. doi:10.1002/anie.201003216

Navalon, S., Alvaro, M., & Garcia, H. (2010). Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Applied Catalysis B: Environmental, 99(1-2), 1-26. doi:10.1016/j.apcatb.2010.07.006

PARIENTE, M., MARTINEZ, F., MELERO, J., BOTAS, J., VELEGRAKI, T., XEKOUKOULOTAKIS, N., & MANTZAVINOS, D. (2008). Heterogeneous photo-Fenton oxidation of benzoic acid in water: Effect of operating conditions, reaction by-products and coupling with biological treatment. Applied Catalysis B: Environmental, 85(1-2), 24-32. doi:10.1016/j.apcatb.2008.06.019

Rodrigues, C. S. D., Madeira, L. M., & Boaventura, R. A. R. (2009). Treatment of textile effluent by chemical (Fenton’s Reagent) and biological (sequencing batch reactor) oxidation. Journal of Hazardous Materials, 172(2-3), 1551-1559. doi:10.1016/j.jhazmat.2009.08.027

Mosteo, R., Sarasa, J., Ormad, M. P., & Ovelleiro, J. L. (2008). Sequential Solar Photo-Fenton-Biological System for the Treatment of Winery Wastewaters. Journal of Agricultural and Food Chemistry, 56(16), 7333-7338. doi:10.1021/jf8005678

Liotta, L. F., Gruttadauria, M., Di Carlo, G., Perrini, G., & Librando, V. (2009). Heterogeneous catalytic degradation of phenolic substrates: Catalysts activity. Journal of Hazardous Materials, 162(2-3), 588-606. doi:10.1016/j.jhazmat.2008.05.115

Ghosh, S. K., & Pal, T. (2007). Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles:  From Theory to Applications. Chemical Reviews, 107(11), 4797-4862. doi:10.1021/cr0680282

(s. f.). doi:10.1021/cr030698

MIN, B., HEO, J., YOUN, N., JOO, O., LEE, H., KIM, J., & KIM, H. (2009). Tuning of the photocatalytic 1,4-dioxane degradation with surface plasmon resonance of gold nanoparticles on titania. Catalysis Communications, 10(5), 712-715. doi:10.1016/j.catcom.2008.11.024

Alvaro, M., Cojocaru, B., Ismail, A. A., Petrea, N., Ferrer, B., Harraz, F. A., … Garcia, H. (2010). Visible-light photocatalytic activity of gold nanoparticles supported on template-synthesized mesoporous titania for the decontamination of the chemical warfare agent Soman. Applied Catalysis B: Environmental, 99(1-2), 191-197. doi:10.1016/j.apcatb.2010.06.019

Chen, X., Zhu, H., Zhao, J., Zheng, Z., & Gao, X. (2008). Visible‐Light‐Driven Oxidation of Organic Contaminants in Air with Gold Nanoparticle Catalysts on Oxide Supports. Angewandte Chemie, 120(29), 5433-5436. doi:10.1002/ange.200800602

Chen, X., Zhu, H., Zhao, J., Zheng, Z., & Gao, X. (2008). Visible‐Light‐Driven Oxidation of Organic Contaminants in Air with Gold Nanoparticle Catalysts on Oxide Supports. Angewandte Chemie International Edition, 47(29), 5353-5356. doi:10.1002/anie.200800602

Primo, A., Corma, A., & García, H. (2011). Titania supported gold nanoparticles as photocatalyst. Phys. Chem. Chem. Phys., 13(3), 886-910. doi:10.1039/c0cp00917b

QUINTANILLA, A., CASAS, J., MOHEDANO, A., & RODRIGUEZ, J. (2006). Reaction pathway of the catalytic wet air oxidation of phenol with a Fe/activated carbon catalyst. Applied Catalysis B: Environmental, 67(3-4), 206-216. doi:10.1016/j.apcatb.2006.05.003

Quintanilla, A., Casas, J. A., & Rodriguez, J. J. (2010). Hydrogen peroxide-promoted-CWAO of phenol with activated carbon. Applied Catalysis B: Environmental, 93(3-4), 339-345. doi:10.1016/j.apcatb.2009.10.007

Chen, H., Yao, J., Wang, F., Zhou, Y., Chen, K., Zhuang, R., … Zaray, G. (2010). Toxicity of three phenolic compounds and their mixtures on the gram-positive bacteria Bacillus subtilis in the aquatic environment. Science of The Total Environment, 408(5), 1043-1049. doi:10.1016/j.scitotenv.2009.11.051

Navalon, S., de Miguel, M., Martin, R., Alvaro, M., & Garcia, H. (2011). Enhancement of the Catalytic Activity of Supported Gold Nanoparticles for the Fenton Reaction by Light. Journal of the American Chemical Society, 133(7), 2218-2226. doi:10.1021/ja108816p

SIEDLECKA, E., WIECKOWSKA, A., & STEPNOWSKI, P. (2007). Influence of inorganic ions on MTBE degradation by Fenton’s reagent. Journal of Hazardous Materials, 147(1-2), 497-502. doi:10.1016/j.jhazmat.2007.01.044

Ksibi, M., Zemzemi, A., & Boukchina, R. (2003). Photocatalytic degradability of substituted phenols over UV irradiated TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 159(1), 61-70. doi:10.1016/s1010-6030(03)00114-x

Coelho, A. D., Sans, C., Agüera, A., Gómez, M. J., Esplugas, S., & Dezotti, M. (2009). Effects of ozone pre-treatment on diclofenac: Intermediates, biodegradability and toxicity assessment. Science of The Total Environment, 407(11), 3572-3578. doi:10.1016/j.scitotenv.2009.01.013

Wang, Y., Chen, J., Li, X., Zhang, S., & Qiao, X. (2009). Estimation of Aqueous-Phase Reaction Rate Constants of Hydroxyl Radical with Phenols, Alkanes and Alcohols. QSAR & Combinatorial Science, 28(11â 12), 1309-1316. doi:10.1002/qsar.200910027

Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., & Freeman, B. A. (1990). Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proceedings of the National Academy of Sciences, 87(4), 1620-1624. doi:10.1073/pnas.87.4.1620

Abad, A., Corma, A., & García, H. (2007). Catalyst Parameters Determining Activity and Selectivity of Supported Gold Nanoparticles for the Aerobic Oxidation of Alcohols: The Molecular Reaction Mechanism. Chemistry - A European Journal, 14(1), 212-222. doi:10.1002/chem.200701263

Martín, R., Álvaro, M., Herance, J. R., & García, H. (2010). Fenton-Treated Functionalized Diamond Nanoparticles as Gene Delivery System. ACS Nano, 4(1), 65-74. doi:10.1021/nn901616c

Martín, R., Heydorn, P. C., Alvaro, M., & Garcia, H. (2009). General Strategy for High-Density Covalent Functionalization of Diamond Nanoparticles Using Fenton Chemistry. Chemistry of Materials, 21(19), 4505-4514. doi:10.1021/cm9012602

Standard methods for the examination of water and wastewater. American Public Health Association 1999

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem