- -

Sunlight-assisted fenton reaction catalyzed by gold supported on diamond nanoparticles as pretreatment for biological degradation of aqueous phenol solutions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sunlight-assisted fenton reaction catalyzed by gold supported on diamond nanoparticles as pretreatment for biological degradation of aqueous phenol solutions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Navalón Oltra, Sergio es_ES
dc.contributor.author Martín González, Roberto es_ES
dc.contributor.author Alvaro Rodríguez, Maria Mercedes es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2013-11-19T16:20:29Z
dc.date.issued 2011-05-23
dc.identifier.issn 1864-5631
dc.identifier.uri http://hdl.handle.net/10251/33767
dc.description.abstract Gold nanoparticles supported on Fenton-treated diamond nanoparticles (Au/DNPs) have been reported as one of the most efficient solid catalysts effecting the Fenton reaction, achieving a turnover number (TON) as high as 321 000. However, at room temperature the main limitation for the catalytic activity of Au/DNPs is the pH of the solution, which should be less than 5. In this paper, we report that exposure of Au/DNPs to sunlight enhances the catalytic activity of Au/DNPs up to the point that it can promote the Fenton reaction at room temperature even at slightly basic pH values. Also, in addition to performing a deep Fenton treatment and considering that the excess of H 2O 2 used in the process should be minimized, we have achieved in our study, using a mild Fenton reaction promoted by Au/DNPs under sunlight irradiation, an optimum in the biodegradability, a minimum in the ecotoxicity, and no toxicity for the Vibrio fischeri test. The results have shown that, by using an H 2O 2-to-phenol molar ratio of 5.5 or higher, it is possible to achieve a high biodegradability as well as a complete lack of ecotoxicity and of Vibrio fischeri toxicity. The stability of Au/DNPs was confirmed by analyzing the gold leached to the solution and by performing four consecutive reuses of the catalyst with initial pH values ranging from 4 to 8. It was observed that, after finishing the reaction and exhaustive washings with basic aqueous solutions, the initial reaction rate of the used catalyst is recovered to the value exhibited by the fresh solid. Overall, our study shows that the synergism between catalysis and photocatalysis can overcome the limitations found for dark catalytic reactions and that the reaction parameters can be optimized to effect mild Fenton reactions aimed at increasing biodegradability in biorecalcitrant waste waters. es_ES
dc.description.sponsorship Financial support by the Spanish DGI (CTQ-2009-11587) is gratefully acknowledged. SN thanks the Technical University of Valencia for a postgraduate research contract (Cantera Program). en_EN
dc.format.extent 8 es_ES
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof ChemSusChem es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fenton reaction es_ES
dc.subject Gold es_ES
dc.subject Heterogeneous catalysis es_ES
dc.subject Nanoparticles es_ES
dc.subject Photolysis es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Sunlight-assisted fenton reaction catalyzed by gold supported on diamond nanoparticles as pretreatment for biological degradation of aqueous phenol solutions es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/cssc.201000453
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2009-11583/ES/Ruptura Fotocaliftica del Agua con Luz Solar/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Navalón Oltra, S.; Martín González, R.; Alvaro Rodríguez, MM.; García Gómez, H. (2011). Sunlight-assisted fenton reaction catalyzed by gold supported on diamond nanoparticles as pretreatment for biological degradation of aqueous phenol solutions. ChemSusChem. 4(5):650-657. https://doi.org/10.1002/cssc.201000453 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://onlinelibrary.wiley.com/doi/10.1002/cssc.201000453/full es_ES
dc.description.upvformatpinicio 650 es_ES
dc.description.upvformatpfin 657 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 202450
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2010). Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst. Angewandte Chemie, 122(45), 8581-8585. doi:10.1002/ange.201003216 es_ES
dc.description.references Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2010). Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst. Angewandte Chemie International Edition, 49(45), 8403-8407. doi:10.1002/anie.201003216 es_ES
dc.description.references Navalon, S., Alvaro, M., & Garcia, H. (2010). Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Applied Catalysis B: Environmental, 99(1-2), 1-26. doi:10.1016/j.apcatb.2010.07.006 es_ES
dc.description.references PARIENTE, M., MARTINEZ, F., MELERO, J., BOTAS, J., VELEGRAKI, T., XEKOUKOULOTAKIS, N., & MANTZAVINOS, D. (2008). Heterogeneous photo-Fenton oxidation of benzoic acid in water: Effect of operating conditions, reaction by-products and coupling with biological treatment. Applied Catalysis B: Environmental, 85(1-2), 24-32. doi:10.1016/j.apcatb.2008.06.019 es_ES
dc.description.references Rodrigues, C. S. D., Madeira, L. M., & Boaventura, R. A. R. (2009). Treatment of textile effluent by chemical (Fenton’s Reagent) and biological (sequencing batch reactor) oxidation. Journal of Hazardous Materials, 172(2-3), 1551-1559. doi:10.1016/j.jhazmat.2009.08.027 es_ES
dc.description.references Mosteo, R., Sarasa, J., Ormad, M. P., & Ovelleiro, J. L. (2008). Sequential Solar Photo-Fenton-Biological System for the Treatment of Winery Wastewaters. Journal of Agricultural and Food Chemistry, 56(16), 7333-7338. doi:10.1021/jf8005678 es_ES
dc.description.references Liotta, L. F., Gruttadauria, M., Di Carlo, G., Perrini, G., & Librando, V. (2009). Heterogeneous catalytic degradation of phenolic substrates: Catalysts activity. Journal of Hazardous Materials, 162(2-3), 588-606. doi:10.1016/j.jhazmat.2008.05.115 es_ES
dc.description.references Ghosh, S. K., & Pal, T. (2007). Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles:  From Theory to Applications. Chemical Reviews, 107(11), 4797-4862. doi:10.1021/cr0680282 es_ES
dc.description.references (s. f.). doi:10.1021/cr030698 es_ES
dc.description.references MIN, B., HEO, J., YOUN, N., JOO, O., LEE, H., KIM, J., & KIM, H. (2009). Tuning of the photocatalytic 1,4-dioxane degradation with surface plasmon resonance of gold nanoparticles on titania. Catalysis Communications, 10(5), 712-715. doi:10.1016/j.catcom.2008.11.024 es_ES
dc.description.references Alvaro, M., Cojocaru, B., Ismail, A. A., Petrea, N., Ferrer, B., Harraz, F. A., … Garcia, H. (2010). Visible-light photocatalytic activity of gold nanoparticles supported on template-synthesized mesoporous titania for the decontamination of the chemical warfare agent Soman. Applied Catalysis B: Environmental, 99(1-2), 191-197. doi:10.1016/j.apcatb.2010.06.019 es_ES
dc.description.references Chen, X., Zhu, H., Zhao, J., Zheng, Z., & Gao, X. (2008). Visible‐Light‐Driven Oxidation of Organic Contaminants in Air with Gold Nanoparticle Catalysts on Oxide Supports. Angewandte Chemie, 120(29), 5433-5436. doi:10.1002/ange.200800602 es_ES
dc.description.references Chen, X., Zhu, H., Zhao, J., Zheng, Z., & Gao, X. (2008). Visible‐Light‐Driven Oxidation of Organic Contaminants in Air with Gold Nanoparticle Catalysts on Oxide Supports. Angewandte Chemie International Edition, 47(29), 5353-5356. doi:10.1002/anie.200800602 es_ES
dc.description.references Primo, A., Corma, A., & García, H. (2011). Titania supported gold nanoparticles as photocatalyst. Phys. Chem. Chem. Phys., 13(3), 886-910. doi:10.1039/c0cp00917b es_ES
dc.description.references QUINTANILLA, A., CASAS, J., MOHEDANO, A., & RODRIGUEZ, J. (2006). Reaction pathway of the catalytic wet air oxidation of phenol with a Fe/activated carbon catalyst. Applied Catalysis B: Environmental, 67(3-4), 206-216. doi:10.1016/j.apcatb.2006.05.003 es_ES
dc.description.references Quintanilla, A., Casas, J. A., & Rodriguez, J. J. (2010). Hydrogen peroxide-promoted-CWAO of phenol with activated carbon. Applied Catalysis B: Environmental, 93(3-4), 339-345. doi:10.1016/j.apcatb.2009.10.007 es_ES
dc.description.references Chen, H., Yao, J., Wang, F., Zhou, Y., Chen, K., Zhuang, R., … Zaray, G. (2010). Toxicity of three phenolic compounds and their mixtures on the gram-positive bacteria Bacillus subtilis in the aquatic environment. Science of The Total Environment, 408(5), 1043-1049. doi:10.1016/j.scitotenv.2009.11.051 es_ES
dc.description.references Navalon, S., de Miguel, M., Martin, R., Alvaro, M., & Garcia, H. (2011). Enhancement of the Catalytic Activity of Supported Gold Nanoparticles for the Fenton Reaction by Light. Journal of the American Chemical Society, 133(7), 2218-2226. doi:10.1021/ja108816p es_ES
dc.description.references SIEDLECKA, E., WIECKOWSKA, A., & STEPNOWSKI, P. (2007). Influence of inorganic ions on MTBE degradation by Fenton’s reagent. Journal of Hazardous Materials, 147(1-2), 497-502. doi:10.1016/j.jhazmat.2007.01.044 es_ES
dc.description.references Ksibi, M., Zemzemi, A., & Boukchina, R. (2003). Photocatalytic degradability of substituted phenols over UV irradiated TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 159(1), 61-70. doi:10.1016/s1010-6030(03)00114-x es_ES
dc.description.references Coelho, A. D., Sans, C., Agüera, A., Gómez, M. J., Esplugas, S., & Dezotti, M. (2009). Effects of ozone pre-treatment on diclofenac: Intermediates, biodegradability and toxicity assessment. Science of The Total Environment, 407(11), 3572-3578. doi:10.1016/j.scitotenv.2009.01.013 es_ES
dc.description.references Wang, Y., Chen, J., Li, X., Zhang, S., & Qiao, X. (2009). Estimation of Aqueous-Phase Reaction Rate Constants of Hydroxyl Radical with Phenols, Alkanes and Alcohols. QSAR & Combinatorial Science, 28(11â 12), 1309-1316. doi:10.1002/qsar.200910027 es_ES
dc.description.references Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., & Freeman, B. A. (1990). Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proceedings of the National Academy of Sciences, 87(4), 1620-1624. doi:10.1073/pnas.87.4.1620 es_ES
dc.description.references Abad, A., Corma, A., & García, H. (2007). Catalyst Parameters Determining Activity and Selectivity of Supported Gold Nanoparticles for the Aerobic Oxidation of Alcohols: The Molecular Reaction Mechanism. Chemistry - A European Journal, 14(1), 212-222. doi:10.1002/chem.200701263 es_ES
dc.description.references Martín, R., Álvaro, M., Herance, J. R., & García, H. (2010). Fenton-Treated Functionalized Diamond Nanoparticles as Gene Delivery System. ACS Nano, 4(1), 65-74. doi:10.1021/nn901616c es_ES
dc.description.references Martín, R., Heydorn, P. C., Alvaro, M., & Garcia, H. (2009). General Strategy for High-Density Covalent Functionalization of Diamond Nanoparticles Using Fenton Chemistry. Chemistry of Materials, 21(19), 4505-4514. doi:10.1021/cm9012602 es_ES
dc.description.references Standard methods for the examination of water and wastewater. American Public Health Association 1999 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem