- -

From biomass wastes to highly efficient CO2 adsorbents: graphitilasation of chitosan and alginate biopolymers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

From biomass wastes to highly efficient CO2 adsorbents: graphitilasation of chitosan and alginate biopolymers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Primo Arnau, Ana María es_ES
dc.contributor.author Forneli Rubio, Mª Amparo es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2013-11-20T10:54:34Z
dc.date.issued 2012-11
dc.identifier.issn 1864-5631
dc.identifier.uri http://hdl.handle.net/10251/33810
dc.description.abstract Carbon spheres from natural biopolymers (alginate and chitosan) are easily synthesised by thermal treatment between 400 and 800°C under an inert atmosphere. All the samples, including the untreated natural biopolymers, as well as the resulting carbon materials, exhibit a remarkable CO2-adsorption capacity. The sample that exhibits the highest adsorption capacity was that obtained by carbonisation of alginate at 800°C and subsequent treatment with KOH at 800°C. This material exhibits a specific surface area of 765m2g1, specific micropore volume of 0.367cm3g1, ultra-micropore volume of 0.185cm3g1, average ultra-micropore size of 0.7nm and CO2-adsorption capacity of 5mmolg1 measured at 0°C and atmospheric pressure. This value is close to the absolute record for CO2 adsorption and, by far, the highest if we compare unit areas or consider the density of the material. The combination of the high N content already included in the chitosan structure and the elevated microporosity in the case of alginate are crucial factors to obtain these satisfactory values with an easy and green preparation procedure. Also, owing to the high conductivity of the alginate-derived carbon (better than graphite), it has been possible to develop a process of reversible adsorption¿desorption by applying a voltage, which is a low-energy desorption method compared with the conventional method of vacuum and high temperatures. All these properties, together with the spherical shape of the material of 0.1mm, which is the most suitable form to favour mass transfer in fluidised-bed reactors, make this material a highly promising adsorbent for industrial applications. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Innovation (MICINN, Consolider Multicat and CTQ2012-32315) is gratefully acknowledged. A. P. thanks the CSIC for a JAE-Doc research associate contract. en_EN
dc.format.extent 8 es_ES
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof ChemSusChem es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Adsorption es_ES
dc.subject Biomass es_ES
dc.subject Carbon es_ES
dc.subject Environmental chemistry es_ES
dc.subject Microporous materials es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title From biomass wastes to highly efficient CO2 adsorbents: graphitilasation of chitosan and alginate biopolymers es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/cssc.201200366
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Primo Arnau, AM.; Forneli Rubio, MA.; Corma Canós, A.; García Gómez, H. (2012). From biomass wastes to highly efficient CO2 adsorbents: graphitilasation of chitosan and alginate biopolymers. ChemSusChem. 5(11):2207-2214. https://doi.org/10.1002/cssc.201200366 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/cssc.201200366 es_ES
dc.description.upvformatpinicio 2207 es_ES
dc.description.upvformatpfin 2214 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 11 es_ES
dc.relation.senia 240500
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Hurrell, J. W. (1995). Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation. Science, 269(5224), 676-679. doi:10.1126/science.269.5224.676 es_ES
dc.description.references Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., … Joseph, D. (1996). The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77(3), 437-471. doi:10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2 es_ES
dc.description.references Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., … Stievenard, M. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399(6735), 429-436. doi:10.1038/20859 es_ES
dc.description.references Dunne, J. A., Rao, M., Sircar, S., Gorte, R. J., & Myers, A. L. (1996). Calorimetric Heats of Adsorption and Adsorption Isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6on NaX, H-ZSM-5, and Na-ZSM-5 Zeolites. Langmuir, 12(24), 5896-5904. doi:10.1021/la960496r es_ES
dc.description.references Furukawa, H., & Yaghi, O. M. (2009). Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications. Journal of the American Chemical Society, 131(25), 8875-8883. doi:10.1021/ja9015765 es_ES
dc.description.references Xu, X., Song, C., Andresen, J. M., Miller, B. G., & Scaroni, A. W. (2002). Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2Capture. Energy & Fuels, 16(6), 1463-1469. doi:10.1021/ef020058u es_ES
dc.description.references ZHAO, H., HU, J., WANG, J., ZHOU, L., & LIU, H. (2007). CO2 Capture by the Amine-modified Mesoporous Materials. Acta Physico-Chimica Sinica, 23(6), 801-806. doi:10.1016/s1872-1508(07)60046-1 es_ES
dc.description.references Britt, D., Furukawa, H., Wang, B., Glover, T. G., & Yaghi, O. M. (2009). Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proceedings of the National Academy of Sciences, 106(49), 20637-20640. doi:10.1073/pnas.0909718106 es_ES
dc.description.references Fernandez, C. A., Nune, S. K., Motkuri, R. K., Thallapally, P. K., Wang, C., Liu, J., … McGrail, B. P. (2010). Synthesis, Characterization, and Application of Metal Organic Framework Nanostructures. Langmuir, 26(24), 18591-18594. doi:10.1021/la103590t es_ES
dc.description.references Yazaydın, A. O., Snurr, R. Q., Park, T.-H., Koh, K., Liu, J., LeVan, M. D., … Willis, R. R. (2009). Screening of Metal−Organic Frameworks for Carbon Dioxide Capture from Flue Gas Using a Combined Experimental and Modeling Approach. Journal of the American Chemical Society, 131(51), 18198-18199. doi:10.1021/ja9057234 es_ES
dc.description.references Arenillas, A., Smith, K. M., Drage, T. C., & Snape, C. E. (2005). CO2 capture using some fly ash-derived carbon materials. Fuel, 84(17), 2204-2210. doi:10.1016/j.fuel.2005.04.003 es_ES
dc.description.references Moreno-Castilla, C., Ferro-Garcia, M. A., Joly, J. P., Bautista-Toledo, I., Carrasco-Marin, F., & Rivera-Utrilla, J. (1995). Activated Carbon Surface Modifications by Nitric Acid, Hydrogen Peroxide, and Ammonium Peroxydisulfate Treatments. Langmuir, 11(11), 4386-4392. doi:10.1021/la00011a035 es_ES
dc.description.references Rodriguez-Mirasol, J., Cordero, T., Radovic, L. R., & Rodriguez, J. J. (1998). Structural and Textural Properties of Pyrolytic Carbon Formed within a Microporous Zeolite Template. Chemistry of Materials, 10(2), 550-558. doi:10.1021/cm970552p es_ES
dc.description.references Nicholson, D., & Gubbins, K. E. (1996). Separation of carbon dioxide–methane mixtures by adsorption: Effects of geometry and energetics on selectivity. The Journal of Chemical Physics, 104(20), 8126-8134. doi:10.1063/1.471527 es_ES
dc.description.references Plaza, M. G., Pevida, C., Arenillas, A., Rubiera, F., & Pis, J. J. (2007). CO2 capture by adsorption with nitrogen enriched carbons. Fuel, 86(14), 2204-2212. doi:10.1016/j.fuel.2007.06.001 es_ES
dc.description.references Hao, G.-P., Li, W.-C., Qian, D., & Lu, A.-H. (2010). Rapid Synthesis of Nitrogen-Doped Porous Carbon Monolith for CO2Capture. Advanced Materials, 22(7), 853-857. doi:10.1002/adma.200903765 es_ES
dc.description.references Wahby, A., Ramos-Fernández, J. M., Martínez-Escandell, M., Sepúlveda-Escribano, A., Silvestre-Albero, J., & Rodríguez-Reinoso, F. (2010). High-Surface-Area Carbon Molecular Sieves for Selective CO2 Adsorption. ChemSusChem, 3(8), 974-981. doi:10.1002/cssc.201000083 es_ES
dc.description.references Alesi, W. R., Gray, M., & Kitchin, J. R. (2010). CO2 Adsorption on Supported Molecular Amidine Systems on Activated Carbon. ChemSusChem, 3(8), 948-956. doi:10.1002/cssc.201000056 es_ES
dc.description.references Xia, Y., Mokaya, R., Walker, G. S., & Zhu, Y. (2011). Superior CO2 Adsorption Capacity on N-doped, High-Surface-Area, Microporous Carbons Templated from Zeolite. Advanced Energy Materials, 1(4), 678-683. doi:10.1002/aenm.201100061 es_ES
dc.description.references Ravi Kumar, M. N. . (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46(1), 1-27. doi:10.1016/s1381-5148(00)00038-9 es_ES
dc.description.references Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603-632. doi:10.1016/j.progpolymsci.2006.06.001 es_ES
dc.description.references Rinaudo, M. (2008). Main properties and current applications of some polysaccharides as biomaterials. Polymer International, 57(3), 397-430. doi:10.1002/pi.2378 es_ES
dc.description.references Primo, A., Liebel, M., & Quignard, F. (2009). Palladium Coordination Biopolymer: A Versatile Access to Highly Porous Dispersed Catalyst for Suzuki Reaction. Chemistry of Materials, 21(4), 621-627. doi:10.1021/cm8020337 es_ES
dc.description.references Robitzer, M., Renzo, F. D., & Quignard, F. (2011). Natural materials with high surface area. Physisorption methods for the characterization of the texture and surface of polysaccharide aerogels. Microporous and Mesoporous Materials, 140(1-3), 9-16. doi:10.1016/j.micromeso.2010.10.006 es_ES
dc.description.references Robitzer, M., Tourrette, A., Horga, R., Valentin, R., Boissière, M., Devoisselle, J. M., … Quignard, F. (2011). Nitrogen sorption as a tool for the characterisation of polysaccharide aerogels. Carbohydrate Polymers, 85(1), 44-53. doi:10.1016/j.carbpol.2011.01.040 es_ES
dc.description.references Bengisu, M., & Yilmaz, E. (2002). Oxidation and pyrolysis of chitosan as a route for carbon fiber derivation. Carbohydrate Polymers, 50(2), 165-175. doi:10.1016/s0144-8617(02)00018-8 es_ES
dc.description.references Kaczmarek, H., & Zawadzki, J. (2010). Chitosan pyrolysis and adsorption properties of chitosan and its carbonizate. Carbohydrate Research, 345(7), 941-947. doi:10.1016/j.carres.2010.02.024 es_ES
dc.description.references Zawadzki, J., & Kaczmarek, H. (2010). Thermal treatment of chitosan in various conditions. Carbohydrate Polymers, 80(2), 394-400. doi:10.1016/j.carbpol.2009.11.037 es_ES
dc.description.references Kiyoura, R., & Urano, K. (1970). Mechanism, Kinetics, and Equilibrium of Thermal Decomposition of Ammonium Sulfate. Industrial & Engineering Chemistry Process Design and Development, 9(4), 489-494. doi:10.1021/i260036a001 es_ES
dc.description.references http://chemistrybook.hubpages.com/hub/Ammonium-Salts-General-Properties-and-Chemistry-of-Ammonium-Salts es_ES
dc.description.references Ferrari, A. C., & Robertson, J. (2001). Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Physical Review B, 64(7). doi:10.1103/physrevb.64.075414 es_ES
dc.description.references Tamor, M. A., & Vassell, W. C. (1994). Raman ‘‘fingerprinting’’ of amorphous carbon films. Journal of Applied Physics, 76(6), 3823-3830. doi:10.1063/1.357385 es_ES
dc.description.references Raymundo-Piñero, E., Leroux, F., & Béguin, F. (2006). A High-Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer. Advanced Materials, 18(14), 1877-1882. doi:10.1002/adma.200501905 es_ES
dc.description.references Cazorla-Amorós, D., Alcañiz-Monge, J., & Linares-Solano, A. (1996). Characterization of Activated Carbon Fibers by CO2Adsorption. Langmuir, 12(11), 2820-2824. doi:10.1021/la960022s es_ES
dc.description.references Drage, T. C., Blackman, J. M., Pevida, C., & Snape, C. E. (2009). Evaluation of Activated Carbon Adsorbents for CO2Capture in Gasification. Energy & Fuels, 23(5), 2790-2796. doi:10.1021/ef8010614 es_ES
dc.description.references Jagiello, J., & Thommes, M. (2004). Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions. Carbon, 42(7), 1227-1232. doi:10.1016/j.carbon.2004.01.022 es_ES
dc.description.references Arenillas, A., Drage, T. C., Smith, K., & Snape, C. E. (2005). CO2 removal potential of carbons prepared by co-pyrolysis of sugar and nitrogen containing compounds. Journal of Analytical and Applied Pyrolysis, 74(1-2), 298-306. doi:10.1016/j.jaap.2004.11.020 es_ES
dc.description.references Jaouen, F., Herranz, J., Lefèvre, M., Dodelet, J.-P., Kramm, U. I., Herrmann, I., … Ustinov, E. A. (2009). Cross-Laboratory Experimental Study of Non-Noble-Metal Electrocatalysts for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 1(8), 1623-1639. doi:10.1021/am900219g es_ES
dc.description.references Titantah, J. T., & Lamoen, D. (2007). Carbon and nitrogen 1s energy levels in amorphous carbon nitride systems: XPS interpretation using first-principles. Diamond and Related Materials, 16(3), 581-588. doi:10.1016/j.diamond.2006.11.048 es_ES
dc.description.references Bonelli, B., Civalleri, B., Fubini, B., Ugliengo, P., Areán, C. O., & Garrone, E. (2000). Experimental and Quantum Chemical Studies on the Adsorption of Carbon Dioxide on Alkali-Metal-Exchanged ZSM-5 Zeolites. The Journal of Physical Chemistry B, 104(47), 10978-10988. doi:10.1021/jp000555g es_ES
dc.description.references Bulánek, R., Frolich, K., Frýdová, E., & Čičmanec, P. (2010). Microcalorimetric and FTIR Study of the Adsorption of Carbon Dioxide on Alkali-Metal Exchanged FER Zeolites. Topics in Catalysis, 53(19-20), 1349-1360. doi:10.1007/s11244-010-9593-6 es_ES
dc.description.references Liu, Z., Grande, C. A., Li, P., Yu, J., & Rodrigues, A. E. (2011). Adsorption and Desorption of Carbon Dioxide and Nitrogen on Zeolite 5A. Separation Science and Technology, 46(3), 434-451. doi:10.1080/01496395.2010.513360 es_ES
dc.description.references Palomino, M., Corma, A., Jordá, J. L., Rey, F., & Valencia, S. (2012). Zeolite Rho: a highly selective adsorbent for CO2/CH4separation induced by a structural phase modification. Chem. Commun., 48(2), 215-217. doi:10.1039/c1cc16320e es_ES
dc.description.references Palomino, M., Corma, A., Rey, F., & Valencia, S. (2010). New Insights on CO2−Methane Separation Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs. Langmuir, 26(3), 1910-1917. doi:10.1021/la9026656 es_ES
dc.description.references Gomes, V. G., & Yee, K. W. K. (2002). Pressure swing adsorption for carbon dioxide sequestration from exhaust gases. Separation and Purification Technology, 28(2), 161-171. doi:10.1016/s1383-5866(02)00064-3 es_ES
dc.description.references Ko, D., Siriwardane, R., & Biegler, L. T. (2003). Optimization of a Pressure-Swing Adsorption Process Using Zeolite 13X for CO2Sequestration. Industrial & Engineering Chemistry Research, 42(2), 339-348. doi:10.1021/ie0204540 es_ES
dc.description.references Burchell, T. D., Judkins, R. R., Rogers, M. R., & Williams, A. M. (1997). A novel process and material for the separation of carbon dioxide and hydrogen sulfide gas mixtures. Carbon, 35(9), 1279-1294. doi:10.1016/s0008-6223(97)00077-8 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem