Mostrar el registro sencillo del ítem
dc.contributor.author | Primo Arnau, Ana María | es_ES |
dc.contributor.author | Forneli Rubio, Mª Amparo | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2013-11-20T10:54:34Z | |
dc.date.issued | 2012-11 | |
dc.identifier.issn | 1864-5631 | |
dc.identifier.uri | http://hdl.handle.net/10251/33810 | |
dc.description.abstract | Carbon spheres from natural biopolymers (alginate and chitosan) are easily synthesised by thermal treatment between 400 and 800°C under an inert atmosphere. All the samples, including the untreated natural biopolymers, as well as the resulting carbon materials, exhibit a remarkable CO2-adsorption capacity. The sample that exhibits the highest adsorption capacity was that obtained by carbonisation of alginate at 800°C and subsequent treatment with KOH at 800°C. This material exhibits a specific surface area of 765m2g1, specific micropore volume of 0.367cm3g1, ultra-micropore volume of 0.185cm3g1, average ultra-micropore size of 0.7nm and CO2-adsorption capacity of 5mmolg1 measured at 0°C and atmospheric pressure. This value is close to the absolute record for CO2 adsorption and, by far, the highest if we compare unit areas or consider the density of the material. The combination of the high N content already included in the chitosan structure and the elevated microporosity in the case of alginate are crucial factors to obtain these satisfactory values with an easy and green preparation procedure. Also, owing to the high conductivity of the alginate-derived carbon (better than graphite), it has been possible to develop a process of reversible adsorption¿desorption by applying a voltage, which is a low-energy desorption method compared with the conventional method of vacuum and high temperatures. All these properties, together with the spherical shape of the material of 0.1mm, which is the most suitable form to favour mass transfer in fluidised-bed reactors, make this material a highly promising adsorbent for industrial applications. | es_ES |
dc.description.sponsorship | Financial support by the Spanish Ministry of Innovation (MICINN, Consolider Multicat and CTQ2012-32315) is gratefully acknowledged. A. P. thanks the CSIC for a JAE-Doc research associate contract. | en_EN |
dc.format.extent | 8 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation.ispartof | ChemSusChem | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Adsorption | es_ES |
dc.subject | Biomass | es_ES |
dc.subject | Carbon | es_ES |
dc.subject | Environmental chemistry | es_ES |
dc.subject | Microporous materials | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | From biomass wastes to highly efficient CO2 adsorbents: graphitilasation of chitosan and alginate biopolymers | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/cssc.201200366 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Primo Arnau, AM.; Forneli Rubio, MA.; Corma Canós, A.; García Gómez, H. (2012). From biomass wastes to highly efficient CO2 adsorbents: graphitilasation of chitosan and alginate biopolymers. ChemSusChem. 5(11):2207-2214. https://doi.org/10.1002/cssc.201200366 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/cssc.201200366 | es_ES |
dc.description.upvformatpinicio | 2207 | es_ES |
dc.description.upvformatpfin | 2214 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 5 | es_ES |
dc.description.issue | 11 | es_ES |
dc.relation.senia | 240500 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Hurrell, J. W. (1995). Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation. Science, 269(5224), 676-679. doi:10.1126/science.269.5224.676 | es_ES |
dc.description.references | Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., … Joseph, D. (1996). The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77(3), 437-471. doi:10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2 | es_ES |
dc.description.references | Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., … Stievenard, M. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399(6735), 429-436. doi:10.1038/20859 | es_ES |
dc.description.references | Dunne, J. A., Rao, M., Sircar, S., Gorte, R. J., & Myers, A. L. (1996). Calorimetric Heats of Adsorption and Adsorption Isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6on NaX, H-ZSM-5, and Na-ZSM-5 Zeolites. Langmuir, 12(24), 5896-5904. doi:10.1021/la960496r | es_ES |
dc.description.references | Furukawa, H., & Yaghi, O. M. (2009). Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications. Journal of the American Chemical Society, 131(25), 8875-8883. doi:10.1021/ja9015765 | es_ES |
dc.description.references | Xu, X., Song, C., Andresen, J. M., Miller, B. G., & Scaroni, A. W. (2002). Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2Capture. Energy & Fuels, 16(6), 1463-1469. doi:10.1021/ef020058u | es_ES |
dc.description.references | ZHAO, H., HU, J., WANG, J., ZHOU, L., & LIU, H. (2007). CO2 Capture by the Amine-modified Mesoporous Materials. Acta Physico-Chimica Sinica, 23(6), 801-806. doi:10.1016/s1872-1508(07)60046-1 | es_ES |
dc.description.references | Britt, D., Furukawa, H., Wang, B., Glover, T. G., & Yaghi, O. M. (2009). Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proceedings of the National Academy of Sciences, 106(49), 20637-20640. doi:10.1073/pnas.0909718106 | es_ES |
dc.description.references | Fernandez, C. A., Nune, S. K., Motkuri, R. K., Thallapally, P. K., Wang, C., Liu, J., … McGrail, B. P. (2010). Synthesis, Characterization, and Application of Metal Organic Framework Nanostructures. Langmuir, 26(24), 18591-18594. doi:10.1021/la103590t | es_ES |
dc.description.references | Yazaydın, A. O., Snurr, R. Q., Park, T.-H., Koh, K., Liu, J., LeVan, M. D., … Willis, R. R. (2009). Screening of Metal−Organic Frameworks for Carbon Dioxide Capture from Flue Gas Using a Combined Experimental and Modeling Approach. Journal of the American Chemical Society, 131(51), 18198-18199. doi:10.1021/ja9057234 | es_ES |
dc.description.references | Arenillas, A., Smith, K. M., Drage, T. C., & Snape, C. E. (2005). CO2 capture using some fly ash-derived carbon materials. Fuel, 84(17), 2204-2210. doi:10.1016/j.fuel.2005.04.003 | es_ES |
dc.description.references | Moreno-Castilla, C., Ferro-Garcia, M. A., Joly, J. P., Bautista-Toledo, I., Carrasco-Marin, F., & Rivera-Utrilla, J. (1995). Activated Carbon Surface Modifications by Nitric Acid, Hydrogen Peroxide, and Ammonium Peroxydisulfate Treatments. Langmuir, 11(11), 4386-4392. doi:10.1021/la00011a035 | es_ES |
dc.description.references | Rodriguez-Mirasol, J., Cordero, T., Radovic, L. R., & Rodriguez, J. J. (1998). Structural and Textural Properties of Pyrolytic Carbon Formed within a Microporous Zeolite Template. Chemistry of Materials, 10(2), 550-558. doi:10.1021/cm970552p | es_ES |
dc.description.references | Nicholson, D., & Gubbins, K. E. (1996). Separation of carbon dioxide–methane mixtures by adsorption: Effects of geometry and energetics on selectivity. The Journal of Chemical Physics, 104(20), 8126-8134. doi:10.1063/1.471527 | es_ES |
dc.description.references | Plaza, M. G., Pevida, C., Arenillas, A., Rubiera, F., & Pis, J. J. (2007). CO2 capture by adsorption with nitrogen enriched carbons. Fuel, 86(14), 2204-2212. doi:10.1016/j.fuel.2007.06.001 | es_ES |
dc.description.references | Hao, G.-P., Li, W.-C., Qian, D., & Lu, A.-H. (2010). Rapid Synthesis of Nitrogen-Doped Porous Carbon Monolith for CO2Capture. Advanced Materials, 22(7), 853-857. doi:10.1002/adma.200903765 | es_ES |
dc.description.references | Wahby, A., Ramos-Fernández, J. M., Martínez-Escandell, M., Sepúlveda-Escribano, A., Silvestre-Albero, J., & Rodríguez-Reinoso, F. (2010). High-Surface-Area Carbon Molecular Sieves for Selective CO2 Adsorption. ChemSusChem, 3(8), 974-981. doi:10.1002/cssc.201000083 | es_ES |
dc.description.references | Alesi, W. R., Gray, M., & Kitchin, J. R. (2010). CO2 Adsorption on Supported Molecular Amidine Systems on Activated Carbon. ChemSusChem, 3(8), 948-956. doi:10.1002/cssc.201000056 | es_ES |
dc.description.references | Xia, Y., Mokaya, R., Walker, G. S., & Zhu, Y. (2011). Superior CO2 Adsorption Capacity on N-doped, High-Surface-Area, Microporous Carbons Templated from Zeolite. Advanced Energy Materials, 1(4), 678-683. doi:10.1002/aenm.201100061 | es_ES |
dc.description.references | Ravi Kumar, M. N. . (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46(1), 1-27. doi:10.1016/s1381-5148(00)00038-9 | es_ES |
dc.description.references | Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603-632. doi:10.1016/j.progpolymsci.2006.06.001 | es_ES |
dc.description.references | Rinaudo, M. (2008). Main properties and current applications of some polysaccharides as biomaterials. Polymer International, 57(3), 397-430. doi:10.1002/pi.2378 | es_ES |
dc.description.references | Primo, A., Liebel, M., & Quignard, F. (2009). Palladium Coordination Biopolymer: A Versatile Access to Highly Porous Dispersed Catalyst for Suzuki Reaction. Chemistry of Materials, 21(4), 621-627. doi:10.1021/cm8020337 | es_ES |
dc.description.references | Robitzer, M., Renzo, F. D., & Quignard, F. (2011). Natural materials with high surface area. Physisorption methods for the characterization of the texture and surface of polysaccharide aerogels. Microporous and Mesoporous Materials, 140(1-3), 9-16. doi:10.1016/j.micromeso.2010.10.006 | es_ES |
dc.description.references | Robitzer, M., Tourrette, A., Horga, R., Valentin, R., Boissière, M., Devoisselle, J. M., … Quignard, F. (2011). Nitrogen sorption as a tool for the characterisation of polysaccharide aerogels. Carbohydrate Polymers, 85(1), 44-53. doi:10.1016/j.carbpol.2011.01.040 | es_ES |
dc.description.references | Bengisu, M., & Yilmaz, E. (2002). Oxidation and pyrolysis of chitosan as a route for carbon fiber derivation. Carbohydrate Polymers, 50(2), 165-175. doi:10.1016/s0144-8617(02)00018-8 | es_ES |
dc.description.references | Kaczmarek, H., & Zawadzki, J. (2010). Chitosan pyrolysis and adsorption properties of chitosan and its carbonizate. Carbohydrate Research, 345(7), 941-947. doi:10.1016/j.carres.2010.02.024 | es_ES |
dc.description.references | Zawadzki, J., & Kaczmarek, H. (2010). Thermal treatment of chitosan in various conditions. Carbohydrate Polymers, 80(2), 394-400. doi:10.1016/j.carbpol.2009.11.037 | es_ES |
dc.description.references | Kiyoura, R., & Urano, K. (1970). Mechanism, Kinetics, and Equilibrium of Thermal Decomposition of Ammonium Sulfate. Industrial & Engineering Chemistry Process Design and Development, 9(4), 489-494. doi:10.1021/i260036a001 | es_ES |
dc.description.references | http://chemistrybook.hubpages.com/hub/Ammonium-Salts-General-Properties-and-Chemistry-of-Ammonium-Salts | es_ES |
dc.description.references | Ferrari, A. C., & Robertson, J. (2001). Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Physical Review B, 64(7). doi:10.1103/physrevb.64.075414 | es_ES |
dc.description.references | Tamor, M. A., & Vassell, W. C. (1994). Raman ‘‘fingerprinting’’ of amorphous carbon films. Journal of Applied Physics, 76(6), 3823-3830. doi:10.1063/1.357385 | es_ES |
dc.description.references | Raymundo-Piñero, E., Leroux, F., & Béguin, F. (2006). A High-Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer. Advanced Materials, 18(14), 1877-1882. doi:10.1002/adma.200501905 | es_ES |
dc.description.references | Cazorla-Amorós, D., Alcañiz-Monge, J., & Linares-Solano, A. (1996). Characterization of Activated Carbon Fibers by CO2Adsorption. Langmuir, 12(11), 2820-2824. doi:10.1021/la960022s | es_ES |
dc.description.references | Drage, T. C., Blackman, J. M., Pevida, C., & Snape, C. E. (2009). Evaluation of Activated Carbon Adsorbents for CO2Capture in Gasification. Energy & Fuels, 23(5), 2790-2796. doi:10.1021/ef8010614 | es_ES |
dc.description.references | Jagiello, J., & Thommes, M. (2004). Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions. Carbon, 42(7), 1227-1232. doi:10.1016/j.carbon.2004.01.022 | es_ES |
dc.description.references | Arenillas, A., Drage, T. C., Smith, K., & Snape, C. E. (2005). CO2 removal potential of carbons prepared by co-pyrolysis of sugar and nitrogen containing compounds. Journal of Analytical and Applied Pyrolysis, 74(1-2), 298-306. doi:10.1016/j.jaap.2004.11.020 | es_ES |
dc.description.references | Jaouen, F., Herranz, J., Lefèvre, M., Dodelet, J.-P., Kramm, U. I., Herrmann, I., … Ustinov, E. A. (2009). Cross-Laboratory Experimental Study of Non-Noble-Metal Electrocatalysts for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 1(8), 1623-1639. doi:10.1021/am900219g | es_ES |
dc.description.references | Titantah, J. T., & Lamoen, D. (2007). Carbon and nitrogen 1s energy levels in amorphous carbon nitride systems: XPS interpretation using first-principles. Diamond and Related Materials, 16(3), 581-588. doi:10.1016/j.diamond.2006.11.048 | es_ES |
dc.description.references | Bonelli, B., Civalleri, B., Fubini, B., Ugliengo, P., Areán, C. O., & Garrone, E. (2000). Experimental and Quantum Chemical Studies on the Adsorption of Carbon Dioxide on Alkali-Metal-Exchanged ZSM-5 Zeolites. The Journal of Physical Chemistry B, 104(47), 10978-10988. doi:10.1021/jp000555g | es_ES |
dc.description.references | Bulánek, R., Frolich, K., Frýdová, E., & Čičmanec, P. (2010). Microcalorimetric and FTIR Study of the Adsorption of Carbon Dioxide on Alkali-Metal Exchanged FER Zeolites. Topics in Catalysis, 53(19-20), 1349-1360. doi:10.1007/s11244-010-9593-6 | es_ES |
dc.description.references | Liu, Z., Grande, C. A., Li, P., Yu, J., & Rodrigues, A. E. (2011). Adsorption and Desorption of Carbon Dioxide and Nitrogen on Zeolite 5A. Separation Science and Technology, 46(3), 434-451. doi:10.1080/01496395.2010.513360 | es_ES |
dc.description.references | Palomino, M., Corma, A., Jordá, J. L., Rey, F., & Valencia, S. (2012). Zeolite Rho: a highly selective adsorbent for CO2/CH4separation induced by a structural phase modification. Chem. Commun., 48(2), 215-217. doi:10.1039/c1cc16320e | es_ES |
dc.description.references | Palomino, M., Corma, A., Rey, F., & Valencia, S. (2010). New Insights on CO2−Methane Separation Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs. Langmuir, 26(3), 1910-1917. doi:10.1021/la9026656 | es_ES |
dc.description.references | Gomes, V. G., & Yee, K. W. K. (2002). Pressure swing adsorption for carbon dioxide sequestration from exhaust gases. Separation and Purification Technology, 28(2), 161-171. doi:10.1016/s1383-5866(02)00064-3 | es_ES |
dc.description.references | Ko, D., Siriwardane, R., & Biegler, L. T. (2003). Optimization of a Pressure-Swing Adsorption Process Using Zeolite 13X for CO2Sequestration. Industrial & Engineering Chemistry Research, 42(2), 339-348. doi:10.1021/ie0204540 | es_ES |
dc.description.references | Burchell, T. D., Judkins, R. R., Rogers, M. R., & Williams, A. M. (1997). A novel process and material for the separation of carbon dioxide and hydrogen sulfide gas mixtures. Carbon, 35(9), 1279-1294. doi:10.1016/s0008-6223(97)00077-8 | es_ES |