- -

From biomass wastes to highly efficient CO2 adsorbents: graphitilasation of chitosan and alginate biopolymers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

From biomass wastes to highly efficient CO2 adsorbents: graphitilasation of chitosan and alginate biopolymers

Mostrar el registro completo del ítem

Primo Arnau, AM.; Forneli Rubio, MA.; Corma Canós, A.; García Gómez, H. (2012). From biomass wastes to highly efficient CO2 adsorbents: graphitilasation of chitosan and alginate biopolymers. ChemSusChem. 5(11):2207-2214. https://doi.org/10.1002/cssc.201200366

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/33810

Ficheros en el ítem

Metadatos del ítem

Título: From biomass wastes to highly efficient CO2 adsorbents: graphitilasation of chitosan and alginate biopolymers
Autor: Primo Arnau, Ana María Forneli Rubio, Mª Amparo Corma Canós, Avelino García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
Carbon spheres from natural biopolymers (alginate and chitosan) are easily synthesised by thermal treatment between 400 and 800°C under an inert atmosphere. All the samples, including the untreated natural biopolymers, as ...[+]
Palabras clave: Adsorption , Biomass , Carbon , Environmental chemistry , Microporous materials
Derechos de uso: Cerrado
Fuente:
ChemSusChem. (issn: 1864-5631 )
DOI: 10.1002/cssc.201200366
Editorial:
Wiley-VCH Verlag
Versión del editor: http://dx.doi.org/10.1002/cssc.201200366
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/
Agradecimientos:
Financial support by the Spanish Ministry of Innovation (MICINN, Consolider Multicat and CTQ2012-32315) is gratefully acknowledged. A. P. thanks the CSIC for a JAE-Doc research associate contract.
Tipo: Artículo

References

Hurrell, J. W. (1995). Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation. Science, 269(5224), 676-679. doi:10.1126/science.269.5224.676

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., … Joseph, D. (1996). The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77(3), 437-471. doi:10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2

Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., … Stievenard, M. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399(6735), 429-436. doi:10.1038/20859 [+]
Hurrell, J. W. (1995). Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation. Science, 269(5224), 676-679. doi:10.1126/science.269.5224.676

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., … Joseph, D. (1996). The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77(3), 437-471. doi:10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2

Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., … Stievenard, M. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399(6735), 429-436. doi:10.1038/20859

Dunne, J. A., Rao, M., Sircar, S., Gorte, R. J., & Myers, A. L. (1996). Calorimetric Heats of Adsorption and Adsorption Isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6on NaX, H-ZSM-5, and Na-ZSM-5 Zeolites. Langmuir, 12(24), 5896-5904. doi:10.1021/la960496r

Furukawa, H., & Yaghi, O. M. (2009). Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications. Journal of the American Chemical Society, 131(25), 8875-8883. doi:10.1021/ja9015765

Xu, X., Song, C., Andresen, J. M., Miller, B. G., & Scaroni, A. W. (2002). Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2Capture. Energy & Fuels, 16(6), 1463-1469. doi:10.1021/ef020058u

ZHAO, H., HU, J., WANG, J., ZHOU, L., & LIU, H. (2007). CO2 Capture by the Amine-modified Mesoporous Materials. Acta Physico-Chimica Sinica, 23(6), 801-806. doi:10.1016/s1872-1508(07)60046-1

Britt, D., Furukawa, H., Wang, B., Glover, T. G., & Yaghi, O. M. (2009). Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proceedings of the National Academy of Sciences, 106(49), 20637-20640. doi:10.1073/pnas.0909718106

Fernandez, C. A., Nune, S. K., Motkuri, R. K., Thallapally, P. K., Wang, C., Liu, J., … McGrail, B. P. (2010). Synthesis, Characterization, and Application of Metal Organic Framework Nanostructures. Langmuir, 26(24), 18591-18594. doi:10.1021/la103590t

Yazaydın, A. O., Snurr, R. Q., Park, T.-H., Koh, K., Liu, J., LeVan, M. D., … Willis, R. R. (2009). Screening of Metal−Organic Frameworks for Carbon Dioxide Capture from Flue Gas Using a Combined Experimental and Modeling Approach. Journal of the American Chemical Society, 131(51), 18198-18199. doi:10.1021/ja9057234

Arenillas, A., Smith, K. M., Drage, T. C., & Snape, C. E. (2005). CO2 capture using some fly ash-derived carbon materials. Fuel, 84(17), 2204-2210. doi:10.1016/j.fuel.2005.04.003

Moreno-Castilla, C., Ferro-Garcia, M. A., Joly, J. P., Bautista-Toledo, I., Carrasco-Marin, F., & Rivera-Utrilla, J. (1995). Activated Carbon Surface Modifications by Nitric Acid, Hydrogen Peroxide, and Ammonium Peroxydisulfate Treatments. Langmuir, 11(11), 4386-4392. doi:10.1021/la00011a035

Rodriguez-Mirasol, J., Cordero, T., Radovic, L. R., & Rodriguez, J. J. (1998). Structural and Textural Properties of Pyrolytic Carbon Formed within a Microporous Zeolite Template. Chemistry of Materials, 10(2), 550-558. doi:10.1021/cm970552p

Nicholson, D., & Gubbins, K. E. (1996). Separation of carbon dioxide–methane mixtures by adsorption: Effects of geometry and energetics on selectivity. The Journal of Chemical Physics, 104(20), 8126-8134. doi:10.1063/1.471527

Plaza, M. G., Pevida, C., Arenillas, A., Rubiera, F., & Pis, J. J. (2007). CO2 capture by adsorption with nitrogen enriched carbons. Fuel, 86(14), 2204-2212. doi:10.1016/j.fuel.2007.06.001

Hao, G.-P., Li, W.-C., Qian, D., & Lu, A.-H. (2010). Rapid Synthesis of Nitrogen-Doped Porous Carbon Monolith for CO2Capture. Advanced Materials, 22(7), 853-857. doi:10.1002/adma.200903765

Wahby, A., Ramos-Fernández, J. M., Martínez-Escandell, M., Sepúlveda-Escribano, A., Silvestre-Albero, J., & Rodríguez-Reinoso, F. (2010). High-Surface-Area Carbon Molecular Sieves for Selective CO2 Adsorption. ChemSusChem, 3(8), 974-981. doi:10.1002/cssc.201000083

Alesi, W. R., Gray, M., & Kitchin, J. R. (2010). CO2 Adsorption on Supported Molecular Amidine Systems on Activated Carbon. ChemSusChem, 3(8), 948-956. doi:10.1002/cssc.201000056

Xia, Y., Mokaya, R., Walker, G. S., & Zhu, Y. (2011). Superior CO2 Adsorption Capacity on N-doped, High-Surface-Area, Microporous Carbons Templated from Zeolite. Advanced Energy Materials, 1(4), 678-683. doi:10.1002/aenm.201100061

Ravi Kumar, M. N. . (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46(1), 1-27. doi:10.1016/s1381-5148(00)00038-9

Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603-632. doi:10.1016/j.progpolymsci.2006.06.001

Rinaudo, M. (2008). Main properties and current applications of some polysaccharides as biomaterials. Polymer International, 57(3), 397-430. doi:10.1002/pi.2378

Primo, A., Liebel, M., & Quignard, F. (2009). Palladium Coordination Biopolymer: A Versatile Access to Highly Porous Dispersed Catalyst for Suzuki Reaction. Chemistry of Materials, 21(4), 621-627. doi:10.1021/cm8020337

Robitzer, M., Renzo, F. D., & Quignard, F. (2011). Natural materials with high surface area. Physisorption methods for the characterization of the texture and surface of polysaccharide aerogels. Microporous and Mesoporous Materials, 140(1-3), 9-16. doi:10.1016/j.micromeso.2010.10.006

Robitzer, M., Tourrette, A., Horga, R., Valentin, R., Boissière, M., Devoisselle, J. M., … Quignard, F. (2011). Nitrogen sorption as a tool for the characterisation of polysaccharide aerogels. Carbohydrate Polymers, 85(1), 44-53. doi:10.1016/j.carbpol.2011.01.040

Bengisu, M., & Yilmaz, E. (2002). Oxidation and pyrolysis of chitosan as a route for carbon fiber derivation. Carbohydrate Polymers, 50(2), 165-175. doi:10.1016/s0144-8617(02)00018-8

Kaczmarek, H., & Zawadzki, J. (2010). Chitosan pyrolysis and adsorption properties of chitosan and its carbonizate. Carbohydrate Research, 345(7), 941-947. doi:10.1016/j.carres.2010.02.024

Zawadzki, J., & Kaczmarek, H. (2010). Thermal treatment of chitosan in various conditions. Carbohydrate Polymers, 80(2), 394-400. doi:10.1016/j.carbpol.2009.11.037

Kiyoura, R., & Urano, K. (1970). Mechanism, Kinetics, and Equilibrium of Thermal Decomposition of Ammonium Sulfate. Industrial & Engineering Chemistry Process Design and Development, 9(4), 489-494. doi:10.1021/i260036a001

http://chemistrybook.hubpages.com/hub/Ammonium-Salts-General-Properties-and-Chemistry-of-Ammonium-Salts

Ferrari, A. C., & Robertson, J. (2001). Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Physical Review B, 64(7). doi:10.1103/physrevb.64.075414

Tamor, M. A., & Vassell, W. C. (1994). Raman ‘‘fingerprinting’’ of amorphous carbon films. Journal of Applied Physics, 76(6), 3823-3830. doi:10.1063/1.357385

Raymundo-Piñero, E., Leroux, F., & Béguin, F. (2006). A High-Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer. Advanced Materials, 18(14), 1877-1882. doi:10.1002/adma.200501905

Cazorla-Amorós, D., Alcañiz-Monge, J., & Linares-Solano, A. (1996). Characterization of Activated Carbon Fibers by CO2Adsorption. Langmuir, 12(11), 2820-2824. doi:10.1021/la960022s

Drage, T. C., Blackman, J. M., Pevida, C., & Snape, C. E. (2009). Evaluation of Activated Carbon Adsorbents for CO2Capture in Gasification. Energy & Fuels, 23(5), 2790-2796. doi:10.1021/ef8010614

Jagiello, J., & Thommes, M. (2004). Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions. Carbon, 42(7), 1227-1232. doi:10.1016/j.carbon.2004.01.022

Arenillas, A., Drage, T. C., Smith, K., & Snape, C. E. (2005). CO2 removal potential of carbons prepared by co-pyrolysis of sugar and nitrogen containing compounds. Journal of Analytical and Applied Pyrolysis, 74(1-2), 298-306. doi:10.1016/j.jaap.2004.11.020

Jaouen, F., Herranz, J., Lefèvre, M., Dodelet, J.-P., Kramm, U. I., Herrmann, I., … Ustinov, E. A. (2009). Cross-Laboratory Experimental Study of Non-Noble-Metal Electrocatalysts for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 1(8), 1623-1639. doi:10.1021/am900219g

Titantah, J. T., & Lamoen, D. (2007). Carbon and nitrogen 1s energy levels in amorphous carbon nitride systems: XPS interpretation using first-principles. Diamond and Related Materials, 16(3), 581-588. doi:10.1016/j.diamond.2006.11.048

Bonelli, B., Civalleri, B., Fubini, B., Ugliengo, P., Areán, C. O., & Garrone, E. (2000). Experimental and Quantum Chemical Studies on the Adsorption of Carbon Dioxide on Alkali-Metal-Exchanged ZSM-5 Zeolites. The Journal of Physical Chemistry B, 104(47), 10978-10988. doi:10.1021/jp000555g

Bulánek, R., Frolich, K., Frýdová, E., & Čičmanec, P. (2010). Microcalorimetric and FTIR Study of the Adsorption of Carbon Dioxide on Alkali-Metal Exchanged FER Zeolites. Topics in Catalysis, 53(19-20), 1349-1360. doi:10.1007/s11244-010-9593-6

Liu, Z., Grande, C. A., Li, P., Yu, J., & Rodrigues, A. E. (2011). Adsorption and Desorption of Carbon Dioxide and Nitrogen on Zeolite 5A. Separation Science and Technology, 46(3), 434-451. doi:10.1080/01496395.2010.513360

Palomino, M., Corma, A., Jordá, J. L., Rey, F., & Valencia, S. (2012). Zeolite Rho: a highly selective adsorbent for CO2/CH4separation induced by a structural phase modification. Chem. Commun., 48(2), 215-217. doi:10.1039/c1cc16320e

Palomino, M., Corma, A., Rey, F., & Valencia, S. (2010). New Insights on CO2−Methane Separation Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs. Langmuir, 26(3), 1910-1917. doi:10.1021/la9026656

Gomes, V. G., & Yee, K. W. K. (2002). Pressure swing adsorption for carbon dioxide sequestration from exhaust gases. Separation and Purification Technology, 28(2), 161-171. doi:10.1016/s1383-5866(02)00064-3

Ko, D., Siriwardane, R., & Biegler, L. T. (2003). Optimization of a Pressure-Swing Adsorption Process Using Zeolite 13X for CO2Sequestration. Industrial & Engineering Chemistry Research, 42(2), 339-348. doi:10.1021/ie0204540

Burchell, T. D., Judkins, R. R., Rogers, M. R., & Williams, A. M. (1997). A novel process and material for the separation of carbon dioxide and hydrogen sulfide gas mixtures. Carbon, 35(9), 1279-1294. doi:10.1016/s0008-6223(97)00077-8

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem