Seth, D., Sarkar, A., Ng, F. T. T., & Rempel, G. L. (2007). Selective hydrogenation of 1,3-butadiene in mixture with isobutene on a Pd/<mml:math altimg=«si52.gif» display=«inline» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mi>α</mml:mi></mml:math>-alumina catalyst in a semi-batch reactor. Chemical Engineering Science, 62(17), 4544-4557. doi:10.1016/j.ces.2007.05.029
Piccolo, L., Piednoir, A., & Bertolini, J.-C. (2005). Pd–Au single-crystal surfaces: Segregation properties and catalytic activity in the selective hydrogenation of 1,3-butadiene. Surface Science, 592(1-3), 169-181. doi:10.1016/j.susc.2005.07.005
Zhang, X., Shi, H., & Xu, B.-Q. (2005). Catalysis by Gold: Isolated Surface Au3+ Ions are Active Sites for Selective Hydrogenation of 1,3-Butadiene over Au/ZrO2 Catalysts. Angewandte Chemie, 117(43), 7294-7297. doi:10.1002/ange.200502101
[+]
Seth, D., Sarkar, A., Ng, F. T. T., & Rempel, G. L. (2007). Selective hydrogenation of 1,3-butadiene in mixture with isobutene on a Pd/<mml:math altimg=«si52.gif» display=«inline» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mi>α</mml:mi></mml:math>-alumina catalyst in a semi-batch reactor. Chemical Engineering Science, 62(17), 4544-4557. doi:10.1016/j.ces.2007.05.029
Piccolo, L., Piednoir, A., & Bertolini, J.-C. (2005). Pd–Au single-crystal surfaces: Segregation properties and catalytic activity in the selective hydrogenation of 1,3-butadiene. Surface Science, 592(1-3), 169-181. doi:10.1016/j.susc.2005.07.005
Zhang, X., Shi, H., & Xu, B.-Q. (2005). Catalysis by Gold: Isolated Surface Au3+ Ions are Active Sites for Selective Hydrogenation of 1,3-Butadiene over Au/ZrO2 Catalysts. Angewandte Chemie, 117(43), 7294-7297. doi:10.1002/ange.200502101
Zhang, X., Shi, H., & Xu, B.-Q. (2005). Catalysis by Gold: Isolated Surface Au3+ Ions are Active Sites for Selective Hydrogenation of 1,3-Butadiene over Au/ZrO2 Catalysts. Angewandte Chemie International Edition, 44(43), 7132-7135. doi:10.1002/anie.200502101
Zhang, X., Llabrés i Xamena, F. X., & Corma, A. (2009). Gold(III) – metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts. Journal of Catalysis, 265(2), 155-160. doi:10.1016/j.jcat.2009.04.021
Bhirud, V. A., Ehresmann, J. O., Kletnieks, P. W., Haw, J. F., & Gates, B. C. (2006). Rhodium Complex with Ethylene Ligands Supported on Highly Dehydroxylated MgO: Synthesis, Characterization, and Reactivity. Langmuir, 22(1), 490-496. doi:10.1021/la052268f
Serna, P., & Gates, B. C. (2011). Zeolite-Supported Rhodium Complexes and Clusters: Switching Catalytic Selectivity by Controlling Structures of Essentially Molecular Species. Journal of the American Chemical Society, 133(13), 4714-4717. doi:10.1021/ja111749s
Berkó, A., & Solymosi, F. (1999). Adsorption-Induced Structural Changes of Rh Supported by TiO2(110)-(1×2): An STM Study. Journal of Catalysis, 183(1), 91-101. doi:10.1006/jcat.1998.2368
Suzuki, A., Inada, Y., Yamaguchi, A., Chihara, T., Yuasa, M., Nomura, M., & Iwasawa, Y. (2003). Time Scale and Elementary Steps of CO-Induced Disintegration of Surface Rhodium Clusters. Angewandte Chemie, 115(39), 4943-4947. doi:10.1002/ange.200352318
Suzuki, A., Inada, Y., Yamaguchi, A., Chihara, T., Yuasa, M., Nomura, M., & Iwasawa, Y. (2003). Time Scale and Elementary Steps of CO-Induced Disintegration of Surface Rhodium Clusters. Angewandte Chemie International Edition, 42(39), 4795-4799. doi:10.1002/anie.200352318
Boitiaux, J. P., Cosyns, J., & Robert, E. (1987). Hydrogenation of unsaturated hydrocarbons in liquid phase on palladium, platinum and rhodium catalysts. Applied Catalysis, 35(2), 193-209. doi:10.1016/s0166-9834(00)82860-2
Al-Ammar, A. S., & Webb, G. (1979). Hydrogenation of acetylene over supported metal catalysts. Part 3.—[14C]tracer studies of the effects of added ethylene and carbon monoxide on the reaction catalysed by silica-supported palladium, rhodium and iridium. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 75(0), 1900. doi:10.1039/f19797501900
Grunes, J., Zhu, J., Yang, M., & Somorjai, G. A. (2003). Catalysis Letters, 86(4), 157-161. doi:10.1023/a:1022628404888
Alayoglu, S., Nilekar, A. U., Mavrikakis, M., & Eichhorn, B. (2008). Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nature Materials, 7(4), 333-338. doi:10.1038/nmat2156
Corma, A., Serna, P., Concepción, P., & Calvino, J. J. (2008). Transforming Nonselective into Chemoselective Metal Catalysts for the Hydrogenation of Substituted Nitroaromatics. Journal of the American Chemical Society, 130(27), 8748-8753. doi:10.1021/ja800959g
Serna, P., Boronat, M., & Corma, A. (2011). Tuning the Behavior of Au and Pt Catalysts for the Chemoselective Hydrogenation of Nitroaromatic Compounds. Topics in Catalysis, 54(5-7), 439-446. doi:10.1007/s11244-011-9668-z
Lee, D. C., Kim, J. H., Kim, W. J., Kang, J. H., & Moon, S. H. (2003). Selective hydrogenation of 1,3-butadiene on TiO2-modified Pd/SiO2 catalysts. Applied Catalysis A: General, 244(1), 83-91. doi:10.1016/s0926-860x(02)00597-5
Bhore, N. A., Klein, M. T., & Bischoff, K. B. (1990). The delplot technique: a new method for reaction pathway analysis. Industrial & Engineering Chemistry Research, 29(2), 313-316. doi:10.1021/ie00098a025
Basu, P., & Yates, J. T. (1989). Structural rearrangements in chemisorbed hydrocarbon layers: 1,3-butadiene on rhodium/alumina. The Journal of Physical Chemistry, 93(5), 2028-2034. doi:10.1021/j100342a063
Bertolini, J. C., Cassuto, A., Jugnet, Y., Massardier, J., Tardy, B., & Tourillon, G. (1996). A comparative study of 1,3-butadiene and 1-butene chemisorbed on Pt(111), and Pd(111). Surface Science, 349(1), 88-96. doi:10.1016/0039-6028(95)01025-4
Tourillon, G., Cassuto, A., Jugnet, Y., Massardier, J., & Bertolini, J. C. (1996). Buta-1,3-diene and but-1-ene chemisorption on Pt(111), Pd(111), Pd(110) and Pd50Cu50(111) as studied by UPS, NEXAFS and HREELS in relation to catalysis. Journal of the Chemical Society, Faraday Transactions, 92(23), 4835. doi:10.1039/ft9969204835
Kelly, D. G., Odriozola, J. A., & Somorjai, G. A. (1987). Chemisorption and surface reactions of molecular deuterium and hydrocarbons on the rhenium(0001) single-crystal surface clean and in the presence of co-adsorbed sulfur or carbon. The Journal of Physical Chemistry, 91(22), 5695-5705. doi:10.1021/j100306a037
Voge, H. H., & May, N. C. (1946). Isomerization Equilibria among the n-Butenes. Journal of the American Chemical Society, 68(4), 550-553. doi:10.1021/ja01208a005
STEPANOV, A., ARZUMANOV, S., LUZGIN, M., ERNST, H., & FREUDE, D. (2005). In situ monitoring of n-butene conversion on H-ferrierite by 1H, 2H, and 13C MAS NMR: kinetics of a double-bond-shift reaction, hydrogen exchange, and the 13C-label scrambling. Journal of Catalysis, 229(1), 243-251. doi:10.1016/j.jcat.2004.10.021
[-]