Mostrar el registro sencillo del ítem
dc.contributor.author | Peinado Pinilla, Jesús | es_ES |
dc.contributor.author | Ibáñez González, Jacinto Javier | es_ES |
dc.contributor.author | Enrique Arias Antunez | es_ES |
dc.contributor.author | Hernández García, Vicente | es_ES |
dc.date.accessioned | 2013-12-04T09:13:49Z | |
dc.date.issued | 2012-08-25 | |
dc.identifier.issn | 1532-0626 | |
dc.identifier.uri | http://hdl.handle.net/10251/34281 | |
dc.description.abstract | In this work, we developed a parallel algorithm to speed up the resolution of differential matrix Riccati equations using a backward differentiation formula algorithm based on a fixed-point method. The role and use of differential matrix Riccati equations is especially important in several applications such as optimal control, filtering, and estimation. In some cases, the problem could be large, and it is interesting to speed it up as much as possible. Recently, modern graphic processing units (GPUs) have been used as a way to improve performance. In this paper, we used an approach based on general-purpose computing on graphics processing units. We used NVIDIA © GPUs with unified architecture. To do this, a special version of basic linear algebra subprograms for GPUs, called CUBLAS, and a package (three different packages were studied) to solve linear systems using GPUs have been used. Moreover, we developed a MATLAB © toolkit to use our implementation from MATLAB in such a way that if the user has a graphic card, the performance of the implementation is improved. If the user does not have such a card, the algorithm can also be run using the machine CPU. Experimental results on a NVIDIA Quadro FX 5800 are shown. Copyright © 2011 John Wiley & Sons, Ltd. | es_ES |
dc.format.extent | 15 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-Blackwell | es_ES |
dc.relation.ispartof | Concurrency and Computation: Practice and Experience | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Differential matrix Riccati equations (DMREs) | es_ES |
dc.subject | Algebraic matrix Riccati equations (AMRE) fixed point | es_ES |
dc.subject | GPGU | es_ES |
dc.subject | MATLAB | es_ES |
dc.subject | CUBLAS | es_ES |
dc.subject | Systems of linear equations | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Speeding up solving of differential matrix Riccati equations using GPGPU computing and MATLAB | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/cpe.1835 | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Peinado Pinilla, J.; Ibáñez González, JJ.; Enrique Arias Antunez; Hernández García, V. (2012). Speeding up solving of differential matrix Riccati equations using GPGPU computing and MATLAB. Concurrency and Computation: Practice and Experience. 24(12):1334-1348. doi:10.1002/cpe.1835 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/cpe.1835 | es_ES |
dc.description.upvformatpinicio | 1334 | es_ES |
dc.description.upvformatpfin | 1348 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 12 | es_ES |
dc.relation.senia | 235523 | |
dc.description.references | Dieci, L. (1992). Numerical Integration of the Differential Riccati Equation and Some Related Issues. SIAM Journal on Numerical Analysis, 29(3), 781-815. doi:10.1137/0729049 | es_ES |
dc.description.references | Vaughan, D. (1969). A negative exponential solution for the matrix Riccati equation. IEEE Transactions on Automatic Control, 14(1), 72-75. doi:10.1109/tac.1969.1099117 | es_ES |
dc.description.references | Davison, E., & Maki, M. (1973). The numerical solution of the matrix Riccati differential equation. IEEE Transactions on Automatic Control, 18(1), 71-73. doi:10.1109/tac.1973.1100210 | es_ES |
dc.description.references | Kenney, C., & Leipnik, R. (1985). Numerical integration of the differential matrix Riccati equation. IEEE Transactions on Automatic Control, 30(10), 962-970. doi:10.1109/tac.1985.1103822 | es_ES |
dc.description.references | Lainiotis, D. (1976). Generalized Chandrasekhar algorithms: Time-varying models. IEEE Transactions on Automatic Control, 21(5), 728-732. doi:10.1109/tac.1976.1101323 | es_ES |
dc.description.references | Rand, D. W., & Winternitz, P. (1984). Nonlinear superposition principles: A new numerical method for solving matrix Riccati equations. Computer Physics Communications, 33(4), 305-328. doi:10.1016/0010-4655(84)90136-x | es_ES |
dc.description.references | Sorine, M., & Winternitz, P. (1985). Superposition laws for solutions of differential matrix Riccati equations arising in control theory. IEEE Transactions on Automatic Control, 30(3), 266-272. doi:10.1109/tac.1985.1103934 | es_ES |
dc.description.references | Choi CH Efficient algorithms for solving stiff matrix-valued Riccati differential equations PhD Thesis 1988 | es_ES |
dc.description.references | Benner P Mena H BDF methods for large-scale differential Riccati equations Proceedings of the 16th International Symposium on Mathematical Theory of Network and Systems (MTNS2004) 2004 | es_ES |
dc.description.references | Arias, E., Hernández, V., Ibáñez, J. J., & Peinado, J. (2007). A fixed point-based BDF method for solving differential Riccati equations. Applied Mathematics and Computation, 188(2), 1319-1333. doi:10.1016/j.amc.2006.11.001 | es_ES |
dc.description.references | Sanz-Serna, J. M. (1992). Symplectic integrators for Hamiltonian problems: an overview. Acta Numerica, 1, 243-286. doi:10.1017/s0962492900002282 | es_ES |
dc.description.references | JÓDAR, L., & PONSODA, E. (1995). Non-autonomous Riccati-type matrix differential equations: existence interval, construction of continuous numerical solutions and error bounds. IMA Journal of Numerical Analysis, 15(1), 61-74. doi:10.1093/imanum/15.1.61 | es_ES |
dc.description.references | Ren-Cang L Unconventional reflexive numerical methods for matrix differential Riccati Technical Report 2000-36 2000 | es_ES |
dc.description.references | Blackford, L. S., Petitet, A., Pozo, R., Remington, K., Whaley, R. C., Demmel, J., … Lumsdaine, A. (2002). An updated set of basic linear algebra subprograms (BLAS). ACM Transactions on Mathematical Software, 28(2), 135-151. doi:10.1145/567806.567807 | es_ES |
dc.description.references | Anderson E Lapack Users' Guide SIAM Philadelphia 1994 | es_ES |
dc.description.references | Barrachina S Castillo M Igual F Mayo R Quintana E Quintana G Exploiting the capabilities of modern GPUS for dense matrix Technical Report ICC 01-11-2008 2008 | es_ES |
dc.description.references | EMPHOTONICS Culatools http://www.culatools.com | es_ES |
dc.description.references | ICL MAGMA: Matrix algebra on GPU and multicore architectures http://icl.cs.utk.edu/magma/ | es_ES |
dc.description.references | Peinado J Ibáñez J Hernández V Arias E A family of BDF algorithms for solving differential matrix Riccati equations using adaptive techniques International Conference on Computational Science 2010 | es_ES |
dc.description.references | Ibáñez J Peinado J Hernández V Arias E A family of BDF methods for solving differential matrix Riccati equations using adaptative techniques Technical Report DSIC-II/08/09 2009 | es_ES |
dc.description.references | Blackford S Dongarra J LAPACK working note 41, installation guide for LAPACK Technical Report 1999 | es_ES |
dc.description.references | Barrachina, S., Castillo, M., Igual, F. D., Mayo, R., Quintana-Ortí, E. S., & Quintana-Ortí, G. (2009). Exploiting the capabilities of modern GPUs for dense matrix computations. Concurrency and Computation: Practice and Experience, 21(18), 2457-2477. doi:10.1002/cpe.1472 | es_ES |
dc.description.references | MathWorks MATLAB MEX Files http://www.mathworks.com/support/tech-notes/1600/1605.shtml\#intro | es_ES |
dc.description.references | NVIDIA Accelerating MATLAB with CUDA Using MEX Files 2007 | es_ES |
dc.description.references | NVIDIA NVIDIA MATLAB plugin http://developer.nvidia.com/object/matlab\_cuda.html | es_ES |
dc.description.references | Dushaw B MATLAB and CUDA 2008 http://faculty.washington.edu/dushaw/epubs/Matlab\_CUDA\_Tutorial\_8\_08.pdf | es_ES |
dc.description.references | Blackford LS Choi J Cleary A D'Azevedo E Demmel J Dhillon I ScaLAPACK Users' Guide SIAM 1997 | es_ES |
dc.description.references | Accelereyes Jacket 2010 http://www.accelereyes.com | es_ES |
dc.description.references | GPUMAT Project GPUMAT user's guide 2010 http://gp-you.org/download/PDF/-GPUmat\_User\_Guide\_0.25.pdf | es_ES |
dc.description.references | Choi, C. H., & Laub, A. J. (1990). Efficient matrix-valued algorithms for solving stiff Riccati differential equations. IEEE Transactions on Automatic Control, 35(7), 770-776. doi:10.1109/9.57015 | es_ES |
dc.description.references | Higham, N. J. (2008). Functions of Matrices. doi:10.1137/1.9780898717778 | es_ES |
dc.description.references | MathWorks Application guidelines 2010 | es_ES |