- -

Speeding up solving of differential matrix Riccati equations using GPGPU computing and MATLAB

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Speeding up solving of differential matrix Riccati equations using GPGPU computing and MATLAB

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Peinado Pinilla, Jesús es_ES
dc.contributor.author Ibáñez González, Jacinto Javier es_ES
dc.contributor.author Enrique Arias Antunez es_ES
dc.contributor.author Hernández García, Vicente es_ES
dc.date.accessioned 2013-12-04T09:13:49Z
dc.date.issued 2012-08-25
dc.identifier.issn 1532-0626
dc.identifier.uri http://hdl.handle.net/10251/34281
dc.description.abstract In this work, we developed a parallel algorithm to speed up the resolution of differential matrix Riccati equations using a backward differentiation formula algorithm based on a fixed-point method. The role and use of differential matrix Riccati equations is especially important in several applications such as optimal control, filtering, and estimation. In some cases, the problem could be large, and it is interesting to speed it up as much as possible. Recently, modern graphic processing units (GPUs) have been used as a way to improve performance. In this paper, we used an approach based on general-purpose computing on graphics processing units. We used NVIDIA © GPUs with unified architecture. To do this, a special version of basic linear algebra subprograms for GPUs, called CUBLAS, and a package (three different packages were studied) to solve linear systems using GPUs have been used. Moreover, we developed a MATLAB © toolkit to use our implementation from MATLAB in such a way that if the user has a graphic card, the performance of the implementation is improved. If the user does not have such a card, the algorithm can also be run using the machine CPU. Experimental results on a NVIDIA Quadro FX 5800 are shown. Copyright © 2011 John Wiley & Sons, Ltd. es_ES
dc.format.extent 15 es_ES
dc.language Inglés es_ES
dc.publisher Wiley-Blackwell es_ES
dc.relation.ispartof Concurrency and Computation: Practice and Experience es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Differential matrix Riccati equations (DMREs) es_ES
dc.subject Algebraic matrix Riccati equations (AMRE) fixed point es_ES
dc.subject GPGU es_ES
dc.subject MATLAB es_ES
dc.subject CUBLAS es_ES
dc.subject Systems of linear equations es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Speeding up solving of differential matrix Riccati equations using GPGPU computing and MATLAB es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/cpe.1835
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Peinado Pinilla, J.; Ibáñez González, JJ.; Enrique Arias Antunez; Hernández García, V. (2012). Speeding up solving of differential matrix Riccati equations using GPGPU computing and MATLAB. Concurrency and Computation: Practice and Experience. 24(12):1334-1348. doi:10.1002/cpe.1835 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/cpe.1835 es_ES
dc.description.upvformatpinicio 1334 es_ES
dc.description.upvformatpfin 1348 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 12 es_ES
dc.relation.senia 235523
dc.description.references Dieci, L. (1992). Numerical Integration of the Differential Riccati Equation and Some Related Issues. SIAM Journal on Numerical Analysis, 29(3), 781-815. doi:10.1137/0729049 es_ES
dc.description.references Vaughan, D. (1969). A negative exponential solution for the matrix Riccati equation. IEEE Transactions on Automatic Control, 14(1), 72-75. doi:10.1109/tac.1969.1099117 es_ES
dc.description.references Davison, E., & Maki, M. (1973). The numerical solution of the matrix Riccati differential equation. IEEE Transactions on Automatic Control, 18(1), 71-73. doi:10.1109/tac.1973.1100210 es_ES
dc.description.references Kenney, C., & Leipnik, R. (1985). Numerical integration of the differential matrix Riccati equation. IEEE Transactions on Automatic Control, 30(10), 962-970. doi:10.1109/tac.1985.1103822 es_ES
dc.description.references Lainiotis, D. (1976). Generalized Chandrasekhar algorithms: Time-varying models. IEEE Transactions on Automatic Control, 21(5), 728-732. doi:10.1109/tac.1976.1101323 es_ES
dc.description.references Rand, D. W., & Winternitz, P. (1984). Nonlinear superposition principles: A new numerical method for solving matrix Riccati equations. Computer Physics Communications, 33(4), 305-328. doi:10.1016/0010-4655(84)90136-x es_ES
dc.description.references Sorine, M., & Winternitz, P. (1985). Superposition laws for solutions of differential matrix Riccati equations arising in control theory. IEEE Transactions on Automatic Control, 30(3), 266-272. doi:10.1109/tac.1985.1103934 es_ES
dc.description.references Choi CH Efficient algorithms for solving stiff matrix-valued Riccati differential equations PhD Thesis 1988 es_ES
dc.description.references Benner P Mena H BDF methods for large-scale differential Riccati equations Proceedings of the 16th International Symposium on Mathematical Theory of Network and Systems (MTNS2004) 2004 es_ES
dc.description.references Arias, E., Hernández, V., Ibáñez, J. J., & Peinado, J. (2007). A fixed point-based BDF method for solving differential Riccati equations. Applied Mathematics and Computation, 188(2), 1319-1333. doi:10.1016/j.amc.2006.11.001 es_ES
dc.description.references Sanz-Serna, J. M. (1992). Symplectic integrators for Hamiltonian problems: an overview. Acta Numerica, 1, 243-286. doi:10.1017/s0962492900002282 es_ES
dc.description.references JÓDAR, L., & PONSODA, E. (1995). Non-autonomous Riccati-type matrix differential equations: existence interval, construction of continuous numerical solutions and error bounds. IMA Journal of Numerical Analysis, 15(1), 61-74. doi:10.1093/imanum/15.1.61 es_ES
dc.description.references Ren-Cang L Unconventional reflexive numerical methods for matrix differential Riccati Technical Report 2000-36 2000 es_ES
dc.description.references Blackford, L. S., Petitet, A., Pozo, R., Remington, K., Whaley, R. C., Demmel, J., … Lumsdaine, A. (2002). An updated set of basic linear algebra subprograms (BLAS). ACM Transactions on Mathematical Software, 28(2), 135-151. doi:10.1145/567806.567807 es_ES
dc.description.references Anderson E Lapack Users' Guide SIAM Philadelphia 1994 es_ES
dc.description.references Barrachina S Castillo M Igual F Mayo R Quintana E Quintana G Exploiting the capabilities of modern GPUS for dense matrix Technical Report ICC 01-11-2008 2008 es_ES
dc.description.references EMPHOTONICS Culatools http://www.culatools.com es_ES
dc.description.references ICL MAGMA: Matrix algebra on GPU and multicore architectures http://icl.cs.utk.edu/magma/ es_ES
dc.description.references Peinado J Ibáñez J Hernández V Arias E A family of BDF algorithms for solving differential matrix Riccati equations using adaptive techniques International Conference on Computational Science 2010 es_ES
dc.description.references Ibáñez J Peinado J Hernández V Arias E A family of BDF methods for solving differential matrix Riccati equations using adaptative techniques Technical Report DSIC-II/08/09 2009 es_ES
dc.description.references Blackford S Dongarra J LAPACK working note 41, installation guide for LAPACK Technical Report 1999 es_ES
dc.description.references Barrachina, S., Castillo, M., Igual, F. D., Mayo, R., Quintana-Ortí, E. S., & Quintana-Ortí, G. (2009). Exploiting the capabilities of modern GPUs for dense matrix computations. Concurrency and Computation: Practice and Experience, 21(18), 2457-2477. doi:10.1002/cpe.1472 es_ES
dc.description.references MathWorks MATLAB MEX Files http://www.mathworks.com/support/tech-notes/1600/1605.shtml\#intro es_ES
dc.description.references NVIDIA Accelerating MATLAB with CUDA Using MEX Files 2007 es_ES
dc.description.references NVIDIA NVIDIA MATLAB plugin http://developer.nvidia.com/object/matlab\_cuda.html es_ES
dc.description.references Dushaw B MATLAB and CUDA 2008 http://faculty.washington.edu/dushaw/epubs/Matlab\_CUDA\_Tutorial\_8\_08.pdf es_ES
dc.description.references Blackford LS Choi J Cleary A D'Azevedo E Demmel J Dhillon I ScaLAPACK Users' Guide SIAM 1997 es_ES
dc.description.references Accelereyes Jacket 2010 http://www.accelereyes.com es_ES
dc.description.references GPUMAT Project GPUMAT user's guide 2010 http://gp-you.org/download/PDF/-GPUmat\_User\_Guide\_0.25.pdf es_ES
dc.description.references Choi, C. H., & Laub, A. J. (1990). Efficient matrix-valued algorithms for solving stiff Riccati differential equations. IEEE Transactions on Automatic Control, 35(7), 770-776. doi:10.1109/9.57015 es_ES
dc.description.references Higham, N. J. (2008). Functions of Matrices. doi:10.1137/1.9780898717778 es_ES
dc.description.references MathWorks Application guidelines 2010 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem