- -

Speeding up solving of differential matrix Riccati equations using GPGPU computing and MATLAB

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Speeding up solving of differential matrix Riccati equations using GPGPU computing and MATLAB

Mostrar el registro completo del ítem

Peinado Pinilla, J.; Ibáñez González, JJ.; Enrique Arias Antunez; Hernández García, V. (2012). Speeding up solving of differential matrix Riccati equations using GPGPU computing and MATLAB. Concurrency and Computation: Practice and Experience. 24(12):1334-1348. doi:10.1002/cpe.1835

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/34281

Ficheros en el ítem

Metadatos del ítem

Título: Speeding up solving of differential matrix Riccati equations using GPGPU computing and MATLAB
Autor: Peinado Pinilla, Jesús Ibáñez González, Jacinto Javier Enrique Arias Antunez Hernández García, Vicente
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
In this work, we developed a parallel algorithm to speed up the resolution of differential matrix Riccati equations using a backward differentiation formula algorithm based on a fixed-point method. The role and use of ...[+]
Palabras clave: Differential matrix Riccati equations (DMREs) , Algebraic matrix Riccati equations (AMRE) fixed point , GPGU , MATLAB , CUBLAS , Systems of linear equations
Derechos de uso: Cerrado
Fuente:
Concurrency and Computation: Practice and Experience. (issn: 1532-0626 )
DOI: 10.1002/cpe.1835
Editorial:
Wiley-Blackwell
Versión del editor: http://dx.doi.org/10.1002/cpe.1835
Tipo: Artículo

References

Dieci, L. (1992). Numerical Integration of the Differential Riccati Equation and Some Related Issues. SIAM Journal on Numerical Analysis, 29(3), 781-815. doi:10.1137/0729049

Vaughan, D. (1969). A negative exponential solution for the matrix Riccati equation. IEEE Transactions on Automatic Control, 14(1), 72-75. doi:10.1109/tac.1969.1099117

Davison, E., & Maki, M. (1973). The numerical solution of the matrix Riccati differential equation. IEEE Transactions on Automatic Control, 18(1), 71-73. doi:10.1109/tac.1973.1100210 [+]
Dieci, L. (1992). Numerical Integration of the Differential Riccati Equation and Some Related Issues. SIAM Journal on Numerical Analysis, 29(3), 781-815. doi:10.1137/0729049

Vaughan, D. (1969). A negative exponential solution for the matrix Riccati equation. IEEE Transactions on Automatic Control, 14(1), 72-75. doi:10.1109/tac.1969.1099117

Davison, E., & Maki, M. (1973). The numerical solution of the matrix Riccati differential equation. IEEE Transactions on Automatic Control, 18(1), 71-73. doi:10.1109/tac.1973.1100210

Kenney, C., & Leipnik, R. (1985). Numerical integration of the differential matrix Riccati equation. IEEE Transactions on Automatic Control, 30(10), 962-970. doi:10.1109/tac.1985.1103822

Lainiotis, D. (1976). Generalized Chandrasekhar algorithms: Time-varying models. IEEE Transactions on Automatic Control, 21(5), 728-732. doi:10.1109/tac.1976.1101323

Rand, D. W., & Winternitz, P. (1984). Nonlinear superposition principles: A new numerical method for solving matrix Riccati equations. Computer Physics Communications, 33(4), 305-328. doi:10.1016/0010-4655(84)90136-x

Sorine, M., & Winternitz, P. (1985). Superposition laws for solutions of differential matrix Riccati equations arising in control theory. IEEE Transactions on Automatic Control, 30(3), 266-272. doi:10.1109/tac.1985.1103934

Choi CH Efficient algorithms for solving stiff matrix-valued Riccati differential equations PhD Thesis 1988

Benner P Mena H BDF methods for large-scale differential Riccati equations Proceedings of the 16th International Symposium on Mathematical Theory of Network and Systems (MTNS2004) 2004

Arias, E., Hernández, V., Ibáñez, J. J., & Peinado, J. (2007). A fixed point-based BDF method for solving differential Riccati equations. Applied Mathematics and Computation, 188(2), 1319-1333. doi:10.1016/j.amc.2006.11.001

Sanz-Serna, J. M. (1992). Symplectic integrators for Hamiltonian problems: an overview. Acta Numerica, 1, 243-286. doi:10.1017/s0962492900002282

JÓDAR, L., & PONSODA, E. (1995). Non-autonomous Riccati-type matrix differential equations: existence interval, construction of continuous numerical solutions and error bounds. IMA Journal of Numerical Analysis, 15(1), 61-74. doi:10.1093/imanum/15.1.61

Ren-Cang L Unconventional reflexive numerical methods for matrix differential Riccati Technical Report 2000-36 2000

Blackford, L. S., Petitet, A., Pozo, R., Remington, K., Whaley, R. C., Demmel, J., … Lumsdaine, A. (2002). An updated set of basic linear algebra subprograms (BLAS). ACM Transactions on Mathematical Software, 28(2), 135-151. doi:10.1145/567806.567807

Anderson E Lapack Users' Guide SIAM Philadelphia 1994

Barrachina S Castillo M Igual F Mayo R Quintana E Quintana G Exploiting the capabilities of modern GPUS for dense matrix Technical Report ICC 01-11-2008 2008

EMPHOTONICS Culatools http://www.culatools.com

ICL MAGMA: Matrix algebra on GPU and multicore architectures http://icl.cs.utk.edu/magma/

Peinado J Ibáñez J Hernández V Arias E A family of BDF algorithms for solving differential matrix Riccati equations using adaptive techniques International Conference on Computational Science 2010

Ibáñez J Peinado J Hernández V Arias E A family of BDF methods for solving differential matrix Riccati equations using adaptative techniques Technical Report DSIC-II/08/09 2009

Blackford S Dongarra J LAPACK working note 41, installation guide for LAPACK Technical Report 1999

Barrachina, S., Castillo, M., Igual, F. D., Mayo, R., Quintana-Ortí, E. S., & Quintana-Ortí, G. (2009). Exploiting the capabilities of modern GPUs for dense matrix computations. Concurrency and Computation: Practice and Experience, 21(18), 2457-2477. doi:10.1002/cpe.1472

MathWorks MATLAB MEX Files http://www.mathworks.com/support/tech-notes/1600/1605.shtml\#intro

NVIDIA Accelerating MATLAB with CUDA Using MEX Files 2007

NVIDIA NVIDIA MATLAB plugin http://developer.nvidia.com/object/matlab\_cuda.html

Dushaw B MATLAB and CUDA 2008 http://faculty.washington.edu/dushaw/epubs/Matlab\_CUDA\_Tutorial\_8\_08.pdf

Blackford LS Choi J Cleary A D'Azevedo E Demmel J Dhillon I ScaLAPACK Users' Guide SIAM 1997

Accelereyes Jacket 2010 http://www.accelereyes.com

GPUMAT Project GPUMAT user's guide 2010 http://gp-you.org/download/PDF/-GPUmat\_User\_Guide\_0.25.pdf

Choi, C. H., & Laub, A. J. (1990). Efficient matrix-valued algorithms for solving stiff Riccati differential equations. IEEE Transactions on Automatic Control, 35(7), 770-776. doi:10.1109/9.57015

Higham, N. J. (2008). Functions of Matrices. doi:10.1137/1.9780898717778

MathWorks Application guidelines 2010

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem