- -

Extracting MRS discriminant functional features of brain tumors

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Extracting MRS discriminant functional features of brain tumors

Show full item record

Fuster García, E.; Tortajada Velert, S.; Vicente Robledo, J.; Robles Viejo, M.; García Gómez, JM. (2013). Extracting MRS discriminant functional features of brain tumors. NMR in Biomedicine. 26(5):578-592. doi:10.1002/nbm.2895

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/34457

Files in this item

Item Metadata

Title: Extracting MRS discriminant functional features of brain tumors
Author: Fuster García, Elíes Tortajada Velert, Salvador Vicente Robledo, Javier Robles Viejo, Montserrat García Gómez, Juan Miguel
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Abstract:
The current challenge in automatic brain tumor classification based on MRS is the improvement of the robustness of the classification models that explicitly account for the probable breach of the independent and identically ...[+]
Subjects: Brain tumors , Clinical decision support systems , Feature extraction , MRS
Copyrigths: Cerrado
Source:
NMR in Biomedicine. (issn: 0952-3480 )
DOI: 10.1002/nbm.2895
Publisher:
Wiley-Blackwell
Publisher version: http://onlinelibrary.wiley.com/doi/10.1002/nbm.2895/abstract
Project ID:
eTUMOUR (contract no. FP6-2002-LIFESCIHEALTH 503094)
HEALTHAGENTS EC project (HEALTHAGENTS) (contract no. FP6-2005-IST 027213)
Thanks:
The authors gratefully acknowledge former INTERPRET and eTUMOUR European project partners. Data providers: Professor B. Celda (Physical Chemistry, University of Valencia, Burjassot, Valencia, Spain); Dr F. A. Howe (St ...[+]
Type: Artículo

References

Tate, A. R., Underwood, J., Acosta, D. M., Julià-Sapé, M., Majós, C., Moreno-Torres, À., … Arús, C. (2006). Development of a decision support system for diagnosis and grading of brain tumours usingin vivo magnetic resonance single voxel spectra. NMR in Biomedicine, 19(4), 411-434. doi:10.1002/nbm.1016

Pérez-Ruiz, A., Julià-Sapé, M., Mercadal, G., Olier, I., Majós, C., & Arús, C. (2010). The INTERPRET Decision-Support System version 3.0 for evaluation of Magnetic Resonance Spectroscopy data from human brain tumours and other abnormal brain masses. BMC Bioinformatics, 11(1), 581. doi:10.1186/1471-2105-11-581

Poullet, J.-B., Sima, D. M., Simonetti, A. W., De Neuter, B., Vanhamme, L., Lemmerling, P., & Van Huffel, S. (2007). An automated quantitation of short echo time MRS spectra in an open source software environment: AQSES. NMR in Biomedicine, 20(5), 493-504. doi:10.1002/nbm.1112 [+]
Tate, A. R., Underwood, J., Acosta, D. M., Julià-Sapé, M., Majós, C., Moreno-Torres, À., … Arús, C. (2006). Development of a decision support system for diagnosis and grading of brain tumours usingin vivo magnetic resonance single voxel spectra. NMR in Biomedicine, 19(4), 411-434. doi:10.1002/nbm.1016

Pérez-Ruiz, A., Julià-Sapé, M., Mercadal, G., Olier, I., Majós, C., & Arús, C. (2010). The INTERPRET Decision-Support System version 3.0 for evaluation of Magnetic Resonance Spectroscopy data from human brain tumours and other abnormal brain masses. BMC Bioinformatics, 11(1), 581. doi:10.1186/1471-2105-11-581

Poullet, J.-B., Sima, D. M., Simonetti, A. W., De Neuter, B., Vanhamme, L., Lemmerling, P., & Van Huffel, S. (2007). An automated quantitation of short echo time MRS spectra in an open source software environment: AQSES. NMR in Biomedicine, 20(5), 493-504. doi:10.1002/nbm.1112

Ratiney, H., Sdika, M., Coenradie, Y., Cavassila, S., Ormondt, D. van, & Graveron-Demilly, D. (2005). Time-domain semi-parametric estimation based on a metabolite basis set. NMR in Biomedicine, 18(1), 1-13. doi:10.1002/nbm.895

Luts, J., Poullet, J.-B., Garcia-Gomez, J. M., Heerschap, A., Robles, M., Suykens, J. A. K., & Huffel, S. V. (2008). Effect of feature extraction for brain tumor classification based on short echo time1H MR spectra. Magnetic Resonance in Medicine, 60(2), 288-298. doi:10.1002/mrm.21626

Menze, B. H., Lichy, M. P., Bachert, P., Kelm, B. M., Schlemmer, H.-P., & Hamprecht, F. A. (2006). Optimal classification of long echo timein vivo magnetic resonance spectra in the detection of recurrent brain tumors. NMR in Biomedicine, 19(5), 599-609. doi:10.1002/nbm.1041

Provencher, S. W. (2001). Automatic quantitation of localizedin vivo1H spectra with LCModel. NMR in Biomedicine, 14(4), 260-264. doi:10.1002/nbm.698

Wilson, M., Reynolds, G., Kauppinen, R. A., Arvanitis, T. N., & Peet, A. C. (2010). A constrained least-squares approach to the automated quantitation of in vivo1H magnetic resonance spectroscopy data. Magnetic Resonance in Medicine, 65(1), 1-12. doi:10.1002/mrm.22579

Simonetti, A. W., Melssen, W. J., Edelenyi, F. S. de, van Asten, J. J. A., Heerschap, A., & Buydens, L. M. C. (2005). Combination of feature-reduced MR spectroscopic and MR imaging data for improved brain tumor classification. NMR in Biomedicine, 18(1), 34-43. doi:10.1002/nbm.919

Raschke, F., Fuster-Garcia, E., Opstad, K. S., & Howe, F. A. (2011). Classification of single-voxel 1H spectra of brain tumours using LCModel. NMR in Biomedicine, 25(2), 322-331. doi:10.1002/nbm.1753

Opstad, K. S., Ladroue, C., Bell, B. A., Griffiths, J. R., & Howe, F. A. (2007). Linear discriminant analysis of brain tumour1H MR spectra: a comparison of classification using whole spectra versus metabolite quantification. NMR in Biomedicine, 20(8), 763-770. doi:10.1002/nbm.1147

Fuster-Garcia, E., Navarro, C., Vicente, J., Tortajada, S., García-Gómez, J. M., Sáez, C., … Robles, M. (2011). Compatibility between 3T 1H SV-MRS data and automatic brain tumour diagnosis support systems based on databases of 1.5T 1H SV-MRS spectra. Magnetic Resonance Materials in Physics, Biology and Medicine, 24(1), 35-42. doi:10.1007/s10334-010-0241-8

García-Gómez, J. M., Luts, J., Julià-Sapé, M., Krooshof, P., Tortajada, S., Robledo, J. V., … Robles, M. (2008). Multiproject–multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy. Magnetic Resonance Materials in Physics, Biology and Medicine, 22(1), 5-18. doi:10.1007/s10334-008-0146-y

Tate, A. R., Majós, C., Moreno, A., Howe, F. A., Griffiths, J. R., & Arús, C. (2002). Automated classification of short echo time in in vivo1H brain tumor spectra: A multicenter study. Magnetic Resonance in Medicine, 49(1), 29-36. doi:10.1002/mrm.10315

Julià-Sapé, M., Acosta, D., Mier, M., Arùs, C., & Watson, D. (2006). A Multi-Centre, Web-Accessible and Quality Control-Checked Database of in vivo MR Spectra of Brain Tumour Patients. Magnetic Resonance Materials in Physics, Biology and Medicine, 19(1), 22-33. doi:10.1007/s10334-005-0023-x

Lukas, L., Devos, A., Suykens, J. A. K., Vanhamme, L., Howe, F. A., Majós, C., … Van Huffel, S. (2004). Brain tumor classification based on long echo proton MRS signals. Artificial Intelligence in Medicine, 31(1), 73-89. doi:10.1016/j.artmed.2004.01.001

Vanhamme, L., Sundin, T., Hecke, P. V., & Huffel, S. V. (2001). MR spectroscopy quantitation: a review of time-domain methods. NMR in Biomedicine, 14(4), 233-246. doi:10.1002/nbm.695

Van der Graaf, M., Julià-Sapé, M., Howe, F. A., Ziegler, A., Majós, C., Moreno-Torres, A., … Heerschap, A. (2008). MRS quality assessment in a multicentre study on MRS-based classification of brain tumours. NMR in Biomedicine, 21(2), 148-158. doi:10.1002/nbm.1172

Sáez C García-Gómez JM Vicente J Tortajada S Esparza M Navarro A Fuster-Garcia E Robles M Martí-Bonmatí L Arús C A generic decision support system featuring an assembled view of predictive models for magnetic resonance and clinical data 25th Annual Scientific Meeting ESMRMB

Klose, U. (1990). In vivo proton spectroscopy in presence of eddy currents. Magnetic Resonance in Medicine, 14(1), 26-30. doi:10.1002/mrm.1910140104

Van den Boogaart A Van Hecke P Van Huffel S Graveron-Demilly S Van Ormondt D de Beer R MRUI: a graphical user interface for accurate routine MRS data analysis 13th Annual Scientific Meeting ESMRMB 1996 319

FISHER, R. A. (1936). THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS. Annals of Eugenics, 7(2), 179-188. doi:10.1111/j.1469-1809.1936.tb02137.x

De Boor, C. (1978). A Practical Guide to Splines. Applied Mathematical Sciences. doi:10.1007/978-1-4612-6333-3

Ramsay, J. (2005). Functional Data Analysis. Encyclopedia of Statistics in Behavioral Science. doi:10.1002/0470013192.bsa239

Craven, P., & Wahba, G. (1978). Smoothing noisy data with spline functions. Numerische Mathematik, 31(4), 377-403. doi:10.1007/bf01404567

Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559-572. doi:10.1080/14786440109462720

García-Gómez, J. M., Tortajada, S., Vidal, C., Julià-Sapé, M., Luts, J., Moreno-Torres, À., … Robles, M. (2008). The effect of combining two echo times in automatic brain tumor classification by MRS. NMR in Biomedicine, 21(10), 1112-1125. doi:10.1002/nbm.1288

Devos, A., Lukas, L., Suykens, J. A. K., Vanhamme, L., Tate, A. R., Howe, F. A., … Van Huffel, S. (2004). Classification of brain tumours using short echo time 1H MR spectra. Journal of Magnetic Resonance, 170(1), 164-175. doi:10.1016/j.jmr.2004.06.010

Daubechies, I. (1992). Ten Lectures on Wavelets. doi:10.1137/1.9781611970104

Hyvärinen, A., Karhunen, J., & Oja, E. (2001). Independent Component Analysis. Adaptive and Learning Systems for Signal Processing, Communications, and Control. doi:10.1002/0471221317

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record