Mostrar el registro sencillo del ítem
dc.contributor.author | Fuster García, Elíes | es_ES |
dc.contributor.author | Tortajada Velert, Salvador | es_ES |
dc.contributor.author | Vicente Robledo, Javier | es_ES |
dc.contributor.author | Robles Viejo, Montserrat | es_ES |
dc.contributor.author | García Gómez, Juan Miguel | es_ES |
dc.date.accessioned | 2013-12-11T13:44:13Z | |
dc.date.available | 2013-12-11T13:44:13Z | |
dc.date.issued | 2013-05 | |
dc.identifier.issn | 0952-3480 | |
dc.identifier.uri | http://hdl.handle.net/10251/34457 | |
dc.description.abstract | The current challenge in automatic brain tumor classification based on MRS is the improvement of the robustness of the classification models that explicitly account for the probable breach of the independent and identically distributed conditions in the MRS data points. To contribute to this purpose, a new algorithm for the extraction of discriminant MRS features of brain tumors based on a functional approach is presented. Functional data analysis based on region segmentation (RSFDA) is based on the functional data analysis formalism using nonuniformly distributed B splines according to spectral regions that are highly correlated. An exhaustive characterization of the method is presented in this work using controlled and real scenarios. The performance of RSFDA was compared with other widely used feature extraction methods. In all simulated conditions, RSFDA was proven to be stable with respect to the number of variables selected and with respect to the classification performance against noise and baseline artifacts. Furthermore, with real multicenter datasets classification, RSFDA and peak integration (PI) obtained better performance than the other feature extraction methods used for comparison. Other advantages of the method proposed are its usefulness in selecting the optimal number of features for classification and its simplified functional representation of the spectra, which contributes to highlight the discriminative regions of the MR spectrum for each classification task. © 2012 John Wiley & Sons, Ltd. | es_ES |
dc.description.sponsorship | The authors gratefully acknowledge former INTERPRET and eTUMOUR European project partners. Data providers: Professor B. Celda (Physical Chemistry, University of Valencia, Burjassot, Valencia, Spain); Dr F. A. Howe (St George's University of London, London, UK); Dr D. Monleon (Fundacion Investigacion HCUV-University of Valencia, Valencia, Spain); Professor A. Heerschap (Radboud University, Nijmegen, the Netherlands.); Dr. W. Gajewicz, Professor L. Stefanczyk and Dr J. Fortuniak (Uniwersytet Medycznyw Lodz, Lodz, Poland); Professor J. Griffiths (CR UK Cambridge Research Institute, Cambridge, UK); Professor A. C. Peet (Academic Department of Paediatrics and Child Health, University of Birmingham, Birmingham, UK); Professor W. Semmler (Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany); Dr. J. Calvar (Fundacion para la Lucha contra las Enfermedades Neurologicas de la Infancia, Buenos Aires, Argentina); Dr. J. Capellades (Hospital Universitari Germans Trias i Pujol, Badalona, Spain); and Dr. C. Majos (Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain). Data curators: Professor C. Arus, Dr M. Julia-Sape, Dr A. P. Candiota, Dr I. Olier, Ms T. Delgado, Ms J. Martin, Ms M. Camison and Mr A. Perez [all from Grup d'Aplicacions Biomediques de la Ressonancia Magestica Nuclear (GABRMN), Universitat Aut noma de Barcelona (UAB) (GABRMN-UAB) and CIBER-BBN]; and Professor B. Celda, Dra. M. C. Martinez-Bisbal and Dra. B. Martinez-Granados (all from Physical Chemistry, University of Valencia, Burjassot, Valencia, Spain). The authors would also like to thank Dr F. A. Howe and F. Raschke for their suggestions and comments. This work was partially funded by the European Commission: eTUMOUR (contract no. FP6-2002-LIFESCIHEALTH 503094), the HEALTHAGENTS EC project (HEALTHAGENTS) (contract no. FP6-2005-IST 027213). | en_EN |
dc.format.extent | 15 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-Blackwell | es_ES |
dc.relation.ispartof | NMR in Biomedicine | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Brain tumors | es_ES |
dc.subject | Clinical decision support systems | es_ES |
dc.subject | Feature extraction | es_ES |
dc.subject | MRS | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Extracting MRS discriminant functional features of brain tumors | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.terms | forever | |
dc.identifier.doi | 10.1002/nbm.2895 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP6/027214/EU/Agent-based Distributed Decision Support System for brain tumour diagnosis and prognosis/HEALTHAGENTS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP6/503094/EU/WEB ACCESSIBLE MR DECISION SUPPORT SYSTEM FOR BRAIN TUMOUR DIAGNOSIS AND PROGNOSIS, INCORPORATING IN VIVO AND EX VIVO GENOMIC AND METABOLIMIC DATA/ETUMOUR/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Fuster García, E.; Tortajada Velert, S.; Vicente Robledo, J.; Robles Viejo, M.; García Gómez, JM. (2013). Extracting MRS discriminant functional features of brain tumors. NMR in Biomedicine. 26(5):578-592. doi:10.1002/nbm.2895 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://onlinelibrary.wiley.com/doi/10.1002/nbm.2895/abstract | |
dc.description.upvformatpinicio | 578 | es_ES |
dc.description.upvformatpfin | 592 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 26 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 234726 | |
dc.contributor.funder | European Commission | es_ES |
dc.description.references | Tate, A. R., Underwood, J., Acosta, D. M., Julià-Sapé, M., Majós, C., Moreno-Torres, À., … Arús, C. (2006). Development of a decision support system for diagnosis and grading of brain tumours usingin vivo magnetic resonance single voxel spectra. NMR in Biomedicine, 19(4), 411-434. doi:10.1002/nbm.1016 | es_ES |
dc.description.references | Pérez-Ruiz, A., Julià-Sapé, M., Mercadal, G., Olier, I., Majós, C., & Arús, C. (2010). The INTERPRET Decision-Support System version 3.0 for evaluation of Magnetic Resonance Spectroscopy data from human brain tumours and other abnormal brain masses. BMC Bioinformatics, 11(1), 581. doi:10.1186/1471-2105-11-581 | es_ES |
dc.description.references | Poullet, J.-B., Sima, D. M., Simonetti, A. W., De Neuter, B., Vanhamme, L., Lemmerling, P., & Van Huffel, S. (2007). An automated quantitation of short echo time MRS spectra in an open source software environment: AQSES. NMR in Biomedicine, 20(5), 493-504. doi:10.1002/nbm.1112 | es_ES |
dc.description.references | Ratiney, H., Sdika, M., Coenradie, Y., Cavassila, S., Ormondt, D. van, & Graveron-Demilly, D. (2005). Time-domain semi-parametric estimation based on a metabolite basis set. NMR in Biomedicine, 18(1), 1-13. doi:10.1002/nbm.895 | es_ES |
dc.description.references | Luts, J., Poullet, J.-B., Garcia-Gomez, J. M., Heerschap, A., Robles, M., Suykens, J. A. K., & Huffel, S. V. (2008). Effect of feature extraction for brain tumor classification based on short echo time1H MR spectra. Magnetic Resonance in Medicine, 60(2), 288-298. doi:10.1002/mrm.21626 | es_ES |
dc.description.references | Menze, B. H., Lichy, M. P., Bachert, P., Kelm, B. M., Schlemmer, H.-P., & Hamprecht, F. A. (2006). Optimal classification of long echo timein vivo magnetic resonance spectra in the detection of recurrent brain tumors. NMR in Biomedicine, 19(5), 599-609. doi:10.1002/nbm.1041 | es_ES |
dc.description.references | Provencher, S. W. (2001). Automatic quantitation of localizedin vivo1H spectra with LCModel. NMR in Biomedicine, 14(4), 260-264. doi:10.1002/nbm.698 | es_ES |
dc.description.references | Wilson, M., Reynolds, G., Kauppinen, R. A., Arvanitis, T. N., & Peet, A. C. (2010). A constrained least-squares approach to the automated quantitation of in vivo1H magnetic resonance spectroscopy data. Magnetic Resonance in Medicine, 65(1), 1-12. doi:10.1002/mrm.22579 | es_ES |
dc.description.references | Simonetti, A. W., Melssen, W. J., Edelenyi, F. S. de, van Asten, J. J. A., Heerschap, A., & Buydens, L. M. C. (2005). Combination of feature-reduced MR spectroscopic and MR imaging data for improved brain tumor classification. NMR in Biomedicine, 18(1), 34-43. doi:10.1002/nbm.919 | es_ES |
dc.description.references | Raschke, F., Fuster-Garcia, E., Opstad, K. S., & Howe, F. A. (2011). Classification of single-voxel 1H spectra of brain tumours using LCModel. NMR in Biomedicine, 25(2), 322-331. doi:10.1002/nbm.1753 | es_ES |
dc.description.references | Opstad, K. S., Ladroue, C., Bell, B. A., Griffiths, J. R., & Howe, F. A. (2007). Linear discriminant analysis of brain tumour1H MR spectra: a comparison of classification using whole spectra versus metabolite quantification. NMR in Biomedicine, 20(8), 763-770. doi:10.1002/nbm.1147 | es_ES |
dc.description.references | Fuster-Garcia, E., Navarro, C., Vicente, J., Tortajada, S., García-Gómez, J. M., Sáez, C., … Robles, M. (2011). Compatibility between 3T 1H SV-MRS data and automatic brain tumour diagnosis support systems based on databases of 1.5T 1H SV-MRS spectra. Magnetic Resonance Materials in Physics, Biology and Medicine, 24(1), 35-42. doi:10.1007/s10334-010-0241-8 | es_ES |
dc.description.references | García-Gómez, J. M., Luts, J., Julià-Sapé, M., Krooshof, P., Tortajada, S., Robledo, J. V., … Robles, M. (2008). Multiproject–multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy. Magnetic Resonance Materials in Physics, Biology and Medicine, 22(1), 5-18. doi:10.1007/s10334-008-0146-y | es_ES |
dc.description.references | Tate, A. R., Majós, C., Moreno, A., Howe, F. A., Griffiths, J. R., & Arús, C. (2002). Automated classification of short echo time in in vivo1H brain tumor spectra: A multicenter study. Magnetic Resonance in Medicine, 49(1), 29-36. doi:10.1002/mrm.10315 | es_ES |
dc.description.references | Julià-Sapé, M., Acosta, D., Mier, M., Arùs, C., & Watson, D. (2006). A Multi-Centre, Web-Accessible and Quality Control-Checked Database of in vivo MR Spectra of Brain Tumour Patients. Magnetic Resonance Materials in Physics, Biology and Medicine, 19(1), 22-33. doi:10.1007/s10334-005-0023-x | es_ES |
dc.description.references | Lukas, L., Devos, A., Suykens, J. A. K., Vanhamme, L., Howe, F. A., Majós, C., … Van Huffel, S. (2004). Brain tumor classification based on long echo proton MRS signals. Artificial Intelligence in Medicine, 31(1), 73-89. doi:10.1016/j.artmed.2004.01.001 | es_ES |
dc.description.references | Vanhamme, L., Sundin, T., Hecke, P. V., & Huffel, S. V. (2001). MR spectroscopy quantitation: a review of time-domain methods. NMR in Biomedicine, 14(4), 233-246. doi:10.1002/nbm.695 | es_ES |
dc.description.references | Van der Graaf, M., Julià-Sapé, M., Howe, F. A., Ziegler, A., Majós, C., Moreno-Torres, A., … Heerschap, A. (2008). MRS quality assessment in a multicentre study on MRS-based classification of brain tumours. NMR in Biomedicine, 21(2), 148-158. doi:10.1002/nbm.1172 | es_ES |
dc.description.references | Sáez C García-Gómez JM Vicente J Tortajada S Esparza M Navarro A Fuster-Garcia E Robles M Martí-Bonmatí L Arús C A generic decision support system featuring an assembled view of predictive models for magnetic resonance and clinical data 25th Annual Scientific Meeting ESMRMB | es_ES |
dc.description.references | Klose, U. (1990). In vivo proton spectroscopy in presence of eddy currents. Magnetic Resonance in Medicine, 14(1), 26-30. doi:10.1002/mrm.1910140104 | es_ES |
dc.description.references | Van den Boogaart A Van Hecke P Van Huffel S Graveron-Demilly S Van Ormondt D de Beer R MRUI: a graphical user interface for accurate routine MRS data analysis 13th Annual Scientific Meeting ESMRMB 1996 319 | es_ES |
dc.description.references | FISHER, R. A. (1936). THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS. Annals of Eugenics, 7(2), 179-188. doi:10.1111/j.1469-1809.1936.tb02137.x | es_ES |
dc.description.references | De Boor, C. (1978). A Practical Guide to Splines. Applied Mathematical Sciences. doi:10.1007/978-1-4612-6333-3 | es_ES |
dc.description.references | Ramsay, J. (2005). Functional Data Analysis. Encyclopedia of Statistics in Behavioral Science. doi:10.1002/0470013192.bsa239 | es_ES |
dc.description.references | Craven, P., & Wahba, G. (1978). Smoothing noisy data with spline functions. Numerische Mathematik, 31(4), 377-403. doi:10.1007/bf01404567 | es_ES |
dc.description.references | Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559-572. doi:10.1080/14786440109462720 | es_ES |
dc.description.references | García-Gómez, J. M., Tortajada, S., Vidal, C., Julià-Sapé, M., Luts, J., Moreno-Torres, À., … Robles, M. (2008). The effect of combining two echo times in automatic brain tumor classification by MRS. NMR in Biomedicine, 21(10), 1112-1125. doi:10.1002/nbm.1288 | es_ES |
dc.description.references | Devos, A., Lukas, L., Suykens, J. A. K., Vanhamme, L., Tate, A. R., Howe, F. A., … Van Huffel, S. (2004). Classification of brain tumours using short echo time 1H MR spectra. Journal of Magnetic Resonance, 170(1), 164-175. doi:10.1016/j.jmr.2004.06.010 | es_ES |
dc.description.references | Daubechies, I. (1992). Ten Lectures on Wavelets. doi:10.1137/1.9781611970104 | es_ES |
dc.description.references | Hyvärinen, A., Karhunen, J., & Oja, E. (2001). Independent Component Analysis. Adaptive and Learning Systems for Signal Processing, Communications, and Control. doi:10.1002/0471221317 | es_ES |