- -

Extracting MRS discriminant functional features of brain tumors

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Extracting MRS discriminant functional features of brain tumors

Show simple item record

Files in this item

dc.contributor.author Fuster García, Elíes es_ES
dc.contributor.author Tortajada Velert, Salvador es_ES
dc.contributor.author Vicente Robledo, Javier es_ES
dc.contributor.author Robles Viejo, Montserrat es_ES
dc.contributor.author García Gómez, Juan Miguel es_ES
dc.date.accessioned 2013-12-11T13:44:13Z
dc.date.available 2013-12-11T13:44:13Z
dc.date.issued 2013-05
dc.identifier.issn 0952-3480
dc.identifier.uri http://hdl.handle.net/10251/34457
dc.description.abstract The current challenge in automatic brain tumor classification based on MRS is the improvement of the robustness of the classification models that explicitly account for the probable breach of the independent and identically distributed conditions in the MRS data points. To contribute to this purpose, a new algorithm for the extraction of discriminant MRS features of brain tumors based on a functional approach is presented. Functional data analysis based on region segmentation (RSFDA) is based on the functional data analysis formalism using nonuniformly distributed B splines according to spectral regions that are highly correlated. An exhaustive characterization of the method is presented in this work using controlled and real scenarios. The performance of RSFDA was compared with other widely used feature extraction methods. In all simulated conditions, RSFDA was proven to be stable with respect to the number of variables selected and with respect to the classification performance against noise and baseline artifacts. Furthermore, with real multicenter datasets classification, RSFDA and peak integration (PI) obtained better performance than the other feature extraction methods used for comparison. Other advantages of the method proposed are its usefulness in selecting the optimal number of features for classification and its simplified functional representation of the spectra, which contributes to highlight the discriminative regions of the MR spectrum for each classification task. © 2012 John Wiley & Sons, Ltd. es_ES
dc.description.sponsorship The authors gratefully acknowledge former INTERPRET and eTUMOUR European project partners. Data providers: Professor B. Celda (Physical Chemistry, University of Valencia, Burjassot, Valencia, Spain); Dr F. A. Howe (St George's University of London, London, UK); Dr D. Monleon (Fundacion Investigacion HCUV-University of Valencia, Valencia, Spain); Professor A. Heerschap (Radboud University, Nijmegen, the Netherlands.); Dr. W. Gajewicz, Professor L. Stefanczyk and Dr J. Fortuniak (Uniwersytet Medycznyw Lodz, Lodz, Poland); Professor J. Griffiths (CR UK Cambridge Research Institute, Cambridge, UK); Professor A. C. Peet (Academic Department of Paediatrics and Child Health, University of Birmingham, Birmingham, UK); Professor W. Semmler (Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany); Dr. J. Calvar (Fundacion para la Lucha contra las Enfermedades Neurologicas de la Infancia, Buenos Aires, Argentina); Dr. J. Capellades (Hospital Universitari Germans Trias i Pujol, Badalona, Spain); and Dr. C. Majos (Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain). Data curators: Professor C. Arus, Dr M. Julia-Sape, Dr A. P. Candiota, Dr I. Olier, Ms T. Delgado, Ms J. Martin, Ms M. Camison and Mr A. Perez [all from Grup d'Aplicacions Biomediques de la Ressonancia Magestica Nuclear (GABRMN), Universitat Aut noma de Barcelona (UAB) (GABRMN-UAB) and CIBER-BBN]; and Professor B. Celda, Dra. M. C. Martinez-Bisbal and Dra. B. Martinez-Granados (all from Physical Chemistry, University of Valencia, Burjassot, Valencia, Spain). The authors would also like to thank Dr F. A. Howe and F. Raschke for their suggestions and comments. This work was partially funded by the European Commission: eTUMOUR (contract no. FP6-2002-LIFESCIHEALTH 503094), the HEALTHAGENTS EC project (HEALTHAGENTS) (contract no. FP6-2005-IST 027213). en_EN
dc.format.extent 15 es_ES
dc.language Inglés es_ES
dc.publisher Wiley-Blackwell es_ES
dc.relation eTUMOUR (contract no. FP6-2002-LIFESCIHEALTH 503094) es_ES
dc.relation HEALTHAGENTS EC project (HEALTHAGENTS) (contract no. FP6-2005-IST 027213) es_ES
dc.relation.ispartof NMR in Biomedicine es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Brain tumors es_ES
dc.subject Clinical decision support systems es_ES
dc.subject Feature extraction es_ES
dc.subject MRS es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Extracting MRS discriminant functional features of brain tumors es_ES
dc.type Artículo es_ES
dc.embargo.terms forever
dc.identifier.doi 10.1002/nbm.2895
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Fuster García, E.; Tortajada Velert, S.; Vicente Robledo, J.; Robles Viejo, M.; García Gómez, JM. (2013). Extracting MRS discriminant functional features of brain tumors. NMR in Biomedicine. 26(5):578-592. doi:10.1002/nbm.2895 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://onlinelibrary.wiley.com/doi/10.1002/nbm.2895/abstract
dc.description.upvformatpinicio 578 es_ES
dc.description.upvformatpfin 592 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 234726
dc.description.references Tate, A. R., Underwood, J., Acosta, D. M., Julià-Sapé, M., Majós, C., Moreno-Torres, À., … Arús, C. (2006). Development of a decision support system for diagnosis and grading of brain tumours usingin vivo magnetic resonance single voxel spectra. NMR in Biomedicine, 19(4), 411-434. doi:10.1002/nbm.1016 es_ES
dc.description.references Pérez-Ruiz, A., Julià-Sapé, M., Mercadal, G., Olier, I., Majós, C., & Arús, C. (2010). The INTERPRET Decision-Support System version 3.0 for evaluation of Magnetic Resonance Spectroscopy data from human brain tumours and other abnormal brain masses. BMC Bioinformatics, 11(1), 581. doi:10.1186/1471-2105-11-581 es_ES
dc.description.references Poullet, J.-B., Sima, D. M., Simonetti, A. W., De Neuter, B., Vanhamme, L., Lemmerling, P., & Van Huffel, S. (2007). An automated quantitation of short echo time MRS spectra in an open source software environment: AQSES. NMR in Biomedicine, 20(5), 493-504. doi:10.1002/nbm.1112 es_ES
dc.description.references Ratiney, H., Sdika, M., Coenradie, Y., Cavassila, S., Ormondt, D. van, & Graveron-Demilly, D. (2005). Time-domain semi-parametric estimation based on a metabolite basis set. NMR in Biomedicine, 18(1), 1-13. doi:10.1002/nbm.895 es_ES
dc.description.references Luts, J., Poullet, J.-B., Garcia-Gomez, J. M., Heerschap, A., Robles, M., Suykens, J. A. K., & Huffel, S. V. (2008). Effect of feature extraction for brain tumor classification based on short echo time1H MR spectra. Magnetic Resonance in Medicine, 60(2), 288-298. doi:10.1002/mrm.21626 es_ES
dc.description.references Menze, B. H., Lichy, M. P., Bachert, P., Kelm, B. M., Schlemmer, H.-P., & Hamprecht, F. A. (2006). Optimal classification of long echo timein vivo magnetic resonance spectra in the detection of recurrent brain tumors. NMR in Biomedicine, 19(5), 599-609. doi:10.1002/nbm.1041 es_ES
dc.description.references Provencher, S. W. (2001). Automatic quantitation of localizedin vivo1H spectra with LCModel. NMR in Biomedicine, 14(4), 260-264. doi:10.1002/nbm.698 es_ES
dc.description.references Wilson, M., Reynolds, G., Kauppinen, R. A., Arvanitis, T. N., & Peet, A. C. (2010). A constrained least-squares approach to the automated quantitation of in vivo1H magnetic resonance spectroscopy data. Magnetic Resonance in Medicine, 65(1), 1-12. doi:10.1002/mrm.22579 es_ES
dc.description.references Simonetti, A. W., Melssen, W. J., Edelenyi, F. S. de, van Asten, J. J. A., Heerschap, A., & Buydens, L. M. C. (2005). Combination of feature-reduced MR spectroscopic and MR imaging data for improved brain tumor classification. NMR in Biomedicine, 18(1), 34-43. doi:10.1002/nbm.919 es_ES
dc.description.references Raschke, F., Fuster-Garcia, E., Opstad, K. S., & Howe, F. A. (2011). Classification of single-voxel 1H spectra of brain tumours using LCModel. NMR in Biomedicine, 25(2), 322-331. doi:10.1002/nbm.1753 es_ES
dc.description.references Opstad, K. S., Ladroue, C., Bell, B. A., Griffiths, J. R., & Howe, F. A. (2007). Linear discriminant analysis of brain tumour1H MR spectra: a comparison of classification using whole spectra versus metabolite quantification. NMR in Biomedicine, 20(8), 763-770. doi:10.1002/nbm.1147 es_ES
dc.description.references Fuster-Garcia, E., Navarro, C., Vicente, J., Tortajada, S., García-Gómez, J. M., Sáez, C., … Robles, M. (2011). Compatibility between 3T 1H SV-MRS data and automatic brain tumour diagnosis support systems based on databases of 1.5T 1H SV-MRS spectra. Magnetic Resonance Materials in Physics, Biology and Medicine, 24(1), 35-42. doi:10.1007/s10334-010-0241-8 es_ES
dc.description.references García-Gómez, J. M., Luts, J., Julià-Sapé, M., Krooshof, P., Tortajada, S., Robledo, J. V., … Robles, M. (2008). Multiproject–multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy. Magnetic Resonance Materials in Physics, Biology and Medicine, 22(1), 5-18. doi:10.1007/s10334-008-0146-y es_ES
dc.description.references Tate, A. R., Majós, C., Moreno, A., Howe, F. A., Griffiths, J. R., & Arús, C. (2002). Automated classification of short echo time in in vivo1H brain tumor spectra: A multicenter study. Magnetic Resonance in Medicine, 49(1), 29-36. doi:10.1002/mrm.10315 es_ES
dc.description.references Julià-Sapé, M., Acosta, D., Mier, M., Arùs, C., & Watson, D. (2006). A Multi-Centre, Web-Accessible and Quality Control-Checked Database of in vivo MR Spectra of Brain Tumour Patients. Magnetic Resonance Materials in Physics, Biology and Medicine, 19(1), 22-33. doi:10.1007/s10334-005-0023-x es_ES
dc.description.references Lukas, L., Devos, A., Suykens, J. A. K., Vanhamme, L., Howe, F. A., Majós, C., … Van Huffel, S. (2004). Brain tumor classification based on long echo proton MRS signals. Artificial Intelligence in Medicine, 31(1), 73-89. doi:10.1016/j.artmed.2004.01.001 es_ES
dc.description.references Vanhamme, L., Sundin, T., Hecke, P. V., & Huffel, S. V. (2001). MR spectroscopy quantitation: a review of time-domain methods. NMR in Biomedicine, 14(4), 233-246. doi:10.1002/nbm.695 es_ES
dc.description.references Van der Graaf, M., Julià-Sapé, M., Howe, F. A., Ziegler, A., Majós, C., Moreno-Torres, A., … Heerschap, A. (2008). MRS quality assessment in a multicentre study on MRS-based classification of brain tumours. NMR in Biomedicine, 21(2), 148-158. doi:10.1002/nbm.1172 es_ES
dc.description.references Sáez C García-Gómez JM Vicente J Tortajada S Esparza M Navarro A Fuster-Garcia E Robles M Martí-Bonmatí L Arús C A generic decision support system featuring an assembled view of predictive models for magnetic resonance and clinical data 25th Annual Scientific Meeting ESMRMB es_ES
dc.description.references Klose, U. (1990). In vivo proton spectroscopy in presence of eddy currents. Magnetic Resonance in Medicine, 14(1), 26-30. doi:10.1002/mrm.1910140104 es_ES
dc.description.references Van den Boogaart A Van Hecke P Van Huffel S Graveron-Demilly S Van Ormondt D de Beer R MRUI: a graphical user interface for accurate routine MRS data analysis 13th Annual Scientific Meeting ESMRMB 1996 319 es_ES
dc.description.references FISHER, R. A. (1936). THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS. Annals of Eugenics, 7(2), 179-188. doi:10.1111/j.1469-1809.1936.tb02137.x es_ES
dc.description.references De Boor, C. (1978). A Practical Guide to Splines. Applied Mathematical Sciences. doi:10.1007/978-1-4612-6333-3 es_ES
dc.description.references Ramsay, J. (2005). Functional Data Analysis. Encyclopedia of Statistics in Behavioral Science. doi:10.1002/0470013192.bsa239 es_ES
dc.description.references Craven, P., & Wahba, G. (1978). Smoothing noisy data with spline functions. Numerische Mathematik, 31(4), 377-403. doi:10.1007/bf01404567 es_ES
dc.description.references Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559-572. doi:10.1080/14786440109462720 es_ES
dc.description.references García-Gómez, J. M., Tortajada, S., Vidal, C., Julià-Sapé, M., Luts, J., Moreno-Torres, À., … Robles, M. (2008). The effect of combining two echo times in automatic brain tumor classification by MRS. NMR in Biomedicine, 21(10), 1112-1125. doi:10.1002/nbm.1288 es_ES
dc.description.references Devos, A., Lukas, L., Suykens, J. A. K., Vanhamme, L., Tate, A. R., Howe, F. A., … Van Huffel, S. (2004). Classification of brain tumours using short echo time 1H MR spectra. Journal of Magnetic Resonance, 170(1), 164-175. doi:10.1016/j.jmr.2004.06.010 es_ES
dc.description.references Daubechies, I. (1992). Ten Lectures on Wavelets. doi:10.1137/1.9781611970104 es_ES
dc.description.references Hyvärinen, A., Karhunen, J., & Oja, E. (2001). Independent Component Analysis. Adaptive and Learning Systems for Signal Processing, Communications, and Control. doi:10.1002/0471221317 es_ES


This item appears in the following Collection(s)

Show simple item record