- -

ARSyN: a method for the identification and removal of systematic noise in multifactorial time-course microarray experiments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

ARSyN: a method for the identification and removal of systematic noise in multifactorial time-course microarray experiments

Mostrar el registro completo del ítem

Nueda, MJ.; Ferrer Riquelme, AJ.; Conesa, A. (2011). ARSyN: a method for the identification and removal of systematic noise in multifactorial time-course microarray experiments. Biostatistics. 13(3):553-566. doi:10.1093/biostatistics/kxr042

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/34665

Ficheros en el ítem

Metadatos del ítem

Título: ARSyN: a method for the identification and removal of systematic noise in multifactorial time-course microarray experiments
Autor: Nueda, María J. Ferrer Riquelme, Alberto José Conesa, Ana
Entidad UPV: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Fecha difusión:
Resumen:
Transcriptomic profiling experiments that aim to the identification of responsive genes in specific biological conditions are commonly set up under defined experimental designs that try to assess the effects of factors ...[+]
Palabras clave: Analysis of variance , Batch effect , Microarrays , Principal components analysis , Systematic noise.
Derechos de uso: Reserva de todos los derechos
Fuente:
Biostatistics. (issn: 1465-4644 )
DOI: 10.1093/biostatistics/kxr042
Editorial:
Oxford University Press (OUP): Policy B - Oxford Open Option A
Versión del editor: http://biostatistics.oxfordjournals.org/content/13/3/553.full.pdf+html
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//DPI2008-06880-C03-03/ES/TECNICAS ESTADISTICAS MULTIVARIANTES PARA EL CONOCIMIENTO, MONITORIZACION Y OPTIMIZACION DE BIOPROCESOS/
info:eu-repo/grantAgreement/MICINN//BIO2008-04368-E/ES/BIO2008-04368-E/
Agradecimientos:
Spanish MICINN Project (BIO2008-04368-E and DPI2008-06880-C03-03/DPI).
Tipo: Artículo

References

Al-Shahrour, F., Minguez, P., Tárraga, J., Medina, I., Alloza, E., Montaner, D., & Dopazo, J. (2007). FatiGO +: a functional profiling tool for genomic data. Integration of functional annotation, regulatory motifs and interaction data with microarray experiments. Nucleic Acids Research, 35(suppl_2), W91-W96. doi:10.1093/nar/gkm260

Alter, O., Brown, P. O., & Botstein, D. (2000). Singular value decomposition for genome-wide expression data processing and modeling. Proceedings of the National Academy of Sciences, 97(18), 10101-10106. doi:10.1073/pnas.97.18.10101

Benito, M., Parker, J., Du, Q., Wu, J., Xiang, D., Perou, C. M., & Marron, J. S. (2003). Adjustment of systematic microarray data biases. Bioinformatics, 20(1), 105-114. doi:10.1093/bioinformatics/btg385 [+]
Al-Shahrour, F., Minguez, P., Tárraga, J., Medina, I., Alloza, E., Montaner, D., & Dopazo, J. (2007). FatiGO +: a functional profiling tool for genomic data. Integration of functional annotation, regulatory motifs and interaction data with microarray experiments. Nucleic Acids Research, 35(suppl_2), W91-W96. doi:10.1093/nar/gkm260

Alter, O., Brown, P. O., & Botstein, D. (2000). Singular value decomposition for genome-wide expression data processing and modeling. Proceedings of the National Academy of Sciences, 97(18), 10101-10106. doi:10.1073/pnas.97.18.10101

Benito, M., Parker, J., Du, Q., Wu, J., Xiang, D., Perou, C. M., & Marron, J. S. (2003). Adjustment of systematic microarray data biases. Bioinformatics, 20(1), 105-114. doi:10.1093/bioinformatics/btg385

Brumós, J., Colmenero-Flores, J. M., Conesa, A., Izquierdo, P., Sánchez, G., Iglesias, D. J., … Talón, M. (2009). Membrane transporters and carbon metabolism implicated in chloride homeostasis differentiate salt stress responses in tolerant and sensitive Citrus rootstocks. Functional & Integrative Genomics, 9(3), 293-309. doi:10.1007/s10142-008-0107-6

Conesa, A., Nueda, M. J., Ferrer, A., & Talon, M. (2006). maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics, 22(9), 1096-1102. doi:10.1093/bioinformatics/btl056

Heijne, W. H. ., Stierum, R. H., Slijper, M., van Bladeren, P. J., & van Ommen, B. (2003). Toxicogenomics of bromobenzene hepatotoxicity: a combined transcriptomics and proteomics approach. Biochemical Pharmacology, 65(5), 857-875. doi:10.1016/s0006-2952(02)01613-1

Jansen, J. J., Hoefsloot, H. C. J., van der Greef, J., Timmerman, M. E., Westerhuis, J. A., & Smilde, A. K. (2005). ASCA: analysis of multivariate data obtained from an experimental design. Journal of Chemometrics, 19(9), 469-481. doi:10.1002/cem.952

Johnson, W. E., Li, C., & Rabinovic, A. (2006). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8(1), 118-127. doi:10.1093/biostatistics/kxj037

Leek, J. T., Scharpf, R. B., Bravo, H. C., Simcha, D., Langmead, B., Johnson, W. E., … Irizarry, R. A. (2010). Tackling the widespread and critical impact of batch effects in high-throughput data. Nature Reviews Genetics, 11(10), 733-739. doi:10.1038/nrg2825

Luo, J., Schumacher, M., Scherer, A., Sanoudou, D., Megherbi, D., Davison, T., … Zhang, J. (2010). A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data. The Pharmacogenomics Journal, 10(4), 278-291. doi:10.1038/tpj.2010.57

(2010). The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nature Biotechnology, 28(8), 827-838. doi:10.1038/nbt.1665

Morán, J. M., Ortiz-Ortiz, M. A., Ruiz-Mesa, L. M., & Fuentes, J. M. (2010). Nitric oxide in paraquat-mediated toxicity: A review. Journal of Biochemical and Molecular Toxicology, 24(6), 402-409. doi:10.1002/jbt.20348

Nueda, M. J., Conesa, A., Westerhuis, J. A., Hoefsloot, H. C. J., Smilde, A. K., Talón, M., & Ferrer, A. (2007). Discovering gene expression patterns in time course microarray experiments by ANOVA–SCA. Bioinformatics, 23(14), 1792-1800. doi:10.1093/bioinformatics/btm251

Rensink, W. A., Iobst, S., Hart, A., Stegalkina, S., Liu, J., & Buell, C. R. (2005). Gene expression profiling of potato responses to cold, heat, and salt stress. Functional & Integrative Genomics, 5(4), 201-207. doi:10.1007/s10142-005-0141-6

Smilde, A. K., Jansen, J. J., Hoefsloot, H. C. J., Lamers, R.-J. A. N., van der Greef, J., & Timmerman, M. E. (2005). ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data. Bioinformatics, 21(13), 3043-3048. doi:10.1093/bioinformatics/bti476

Storey, J. D., Xiao, W., Leek, J. T., Tompkins, R. G., & Davis, R. W. (2005). Significance analysis of time course microarray experiments. Proceedings of the National Academy of Sciences, 102(36), 12837-12842. doi:10.1073/pnas.0504609102

Svendsen, C., Owen, J., Kille, P., Wren, J., Jonker, M. J., Headley, B. A., … Spurgeon, D. J. (2008). Comparative Transcriptomic Responses to Chronic Cadmium, Fluoranthene, and Atrazine Exposure in Lumbricus rubellus. Environmental Science & Technology, 42(11), 4208-4214. doi:10.1021/es702745d

Tai, Y. C., & Speed, T. P. (2006). A multivariate empirical Bayes statistic for replicated microarray time course data. The Annals of Statistics, 34(5), 2387-2412. doi:10.1214/009053606000000759

Chuan Tai, Y., & Speed, T. P. (2008). On Gene Ranking Using Replicated Microarray Time Course Data. Biometrics, 65(1), 40-51. doi:10.1111/j.1541-0420.2008.01057.x

Yang, Y. H. (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, 30(4), 15e-15. doi:10.1093/nar/30.4.e15

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem