- -

ARSyN: a method for the identification and removal of systematic noise in multifactorial time-course microarray experiments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

ARSyN: a method for the identification and removal of systematic noise in multifactorial time-course microarray experiments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Nueda, María J. es_ES
dc.contributor.author Ferrer Riquelme, Alberto José es_ES
dc.contributor.author Conesa, Ana es_ES
dc.date.accessioned 2013-12-23T08:12:09Z
dc.date.issued 2011-11-14
dc.identifier.issn 1465-4644
dc.identifier.uri http://hdl.handle.net/10251/34665
dc.description.abstract Transcriptomic profiling experiments that aim to the identification of responsive genes in specific biological conditions are commonly set up under defined experimental designs that try to assess the effects of factors and their interactions on gene expression. Data from these controlled experiments, however, may also contain sources of unwanted noise that can distort the signal under study, affect the residuals of applied statistical models, and hamper data analysis. Commonly, normalization methods are applied to transcriptomics data to remove technical artifacts, but these are normally based on general assumptions of transcript distribution and greatly ignore both the characteristics of the experiment under consideration and the coordinative nature of gene expression. In this paper, we propose a novel methodology, ARSyN, for the preprocessing of microarray data that takes into account these 2 last aspects. By combining analysis of variance (ANOVA) modeling of gene expression values and multivariate analysis of estimated effects, the method identifies the nonstructured part of the signal associated to the experimental factors (the noise within the signal) and the structured variation of the ANOVA errors (the signal of the noise). By removing these noise fractions from the original data, we create a filtered data set that is rich in the information of interest and includes only the random noise required for inferential analysis. In this work, we focus on multifactorial time course microarray (MTCM) experiments with 2 factors: one quantitative such as time or dosage and the other qualitative, as tissue, strain, or treatment. However, the method can be used in other situations such as experiments with only one factor or more complex designs with more than 2 factors. The filtered data obtained after applying ARSyN can be further analyzed with the appropriate statistical technique to obtain the biological information required. To evaluate the performance of the filtering strategy, we have applied different statistical approaches for MTCM analysis to several real and simulateddata sets, studying also the efficiency of these techniques. By comparing the results obtained with the original and ARSyN filtered data and also with other filtering techniques, we can conclude that the proposed method increases the statistical power to detect biological signals, especially in cases where there are high levels of structural noise. Software for ARSyN is freely available at http://www.ua.es/personal/mj.nueda es_ES
dc.description.sponsorship Spanish MICINN Project (BIO2008-04368-E and DPI2008-06880-C03-03/DPI). en_EN
dc.language Inglés es_ES
dc.publisher Oxford University Press (OUP): Policy B - Oxford Open Option A es_ES
dc.relation.ispartof Biostatistics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Analysis of variance es_ES
dc.subject Batch effect es_ES
dc.subject Microarrays es_ES
dc.subject Principal components analysis es_ES
dc.subject Systematic noise. es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title ARSyN: a method for the identification and removal of systematic noise in multifactorial time-course microarray experiments es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1093/biostatistics/kxr042
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2008-06880-C03-03/ES/TECNICAS ESTADISTICAS MULTIVARIANTES PARA EL CONOCIMIENTO, MONITORIZACION Y OPTIMIZACION DE BIOPROCESOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIO2008-04368-E/ES/BIO2008-04368-E/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Nueda, MJ.; Ferrer Riquelme, AJ.; Conesa, A. (2011). ARSyN: a method for the identification and removal of systematic noise in multifactorial time-course microarray experiments. Biostatistics. 13(3):553-566. doi:10.1093/biostatistics/kxr042 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://biostatistics.oxfordjournals.org/content/13/3/553.full.pdf+html es_ES
dc.description.upvformatpinicio 553 es_ES
dc.description.upvformatpfin 566 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 242715
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Al-Shahrour, F., Minguez, P., Tárraga, J., Medina, I., Alloza, E., Montaner, D., & Dopazo, J. (2007). FatiGO +: a functional profiling tool for genomic data. Integration of functional annotation, regulatory motifs and interaction data with microarray experiments. Nucleic Acids Research, 35(suppl_2), W91-W96. doi:10.1093/nar/gkm260 es_ES
dc.description.references Alter, O., Brown, P. O., & Botstein, D. (2000). Singular value decomposition for genome-wide expression data processing and modeling. Proceedings of the National Academy of Sciences, 97(18), 10101-10106. doi:10.1073/pnas.97.18.10101 es_ES
dc.description.references Benito, M., Parker, J., Du, Q., Wu, J., Xiang, D., Perou, C. M., & Marron, J. S. (2003). Adjustment of systematic microarray data biases. Bioinformatics, 20(1), 105-114. doi:10.1093/bioinformatics/btg385 es_ES
dc.description.references Brumós, J., Colmenero-Flores, J. M., Conesa, A., Izquierdo, P., Sánchez, G., Iglesias, D. J., … Talón, M. (2009). Membrane transporters and carbon metabolism implicated in chloride homeostasis differentiate salt stress responses in tolerant and sensitive Citrus rootstocks. Functional & Integrative Genomics, 9(3), 293-309. doi:10.1007/s10142-008-0107-6 es_ES
dc.description.references Conesa, A., Nueda, M. J., Ferrer, A., & Talon, M. (2006). maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics, 22(9), 1096-1102. doi:10.1093/bioinformatics/btl056 es_ES
dc.description.references Heijne, W. H. ., Stierum, R. H., Slijper, M., van Bladeren, P. J., & van Ommen, B. (2003). Toxicogenomics of bromobenzene hepatotoxicity: a combined transcriptomics and proteomics approach. Biochemical Pharmacology, 65(5), 857-875. doi:10.1016/s0006-2952(02)01613-1 es_ES
dc.description.references Jansen, J. J., Hoefsloot, H. C. J., van der Greef, J., Timmerman, M. E., Westerhuis, J. A., & Smilde, A. K. (2005). ASCA: analysis of multivariate data obtained from an experimental design. Journal of Chemometrics, 19(9), 469-481. doi:10.1002/cem.952 es_ES
dc.description.references Johnson, W. E., Li, C., & Rabinovic, A. (2006). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8(1), 118-127. doi:10.1093/biostatistics/kxj037 es_ES
dc.description.references Leek, J. T., Scharpf, R. B., Bravo, H. C., Simcha, D., Langmead, B., Johnson, W. E., … Irizarry, R. A. (2010). Tackling the widespread and critical impact of batch effects in high-throughput data. Nature Reviews Genetics, 11(10), 733-739. doi:10.1038/nrg2825 es_ES
dc.description.references Luo, J., Schumacher, M., Scherer, A., Sanoudou, D., Megherbi, D., Davison, T., … Zhang, J. (2010). A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data. The Pharmacogenomics Journal, 10(4), 278-291. doi:10.1038/tpj.2010.57 es_ES
dc.description.references (2010). The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nature Biotechnology, 28(8), 827-838. doi:10.1038/nbt.1665 es_ES
dc.description.references Morán, J. M., Ortiz-Ortiz, M. A., Ruiz-Mesa, L. M., & Fuentes, J. M. (2010). Nitric oxide in paraquat-mediated toxicity: A review. Journal of Biochemical and Molecular Toxicology, 24(6), 402-409. doi:10.1002/jbt.20348 es_ES
dc.description.references Nueda, M. J., Conesa, A., Westerhuis, J. A., Hoefsloot, H. C. J., Smilde, A. K., Talón, M., & Ferrer, A. (2007). Discovering gene expression patterns in time course microarray experiments by ANOVA–SCA. Bioinformatics, 23(14), 1792-1800. doi:10.1093/bioinformatics/btm251 es_ES
dc.description.references Rensink, W. A., Iobst, S., Hart, A., Stegalkina, S., Liu, J., & Buell, C. R. (2005). Gene expression profiling of potato responses to cold, heat, and salt stress. Functional & Integrative Genomics, 5(4), 201-207. doi:10.1007/s10142-005-0141-6 es_ES
dc.description.references Smilde, A. K., Jansen, J. J., Hoefsloot, H. C. J., Lamers, R.-J. A. N., van der Greef, J., & Timmerman, M. E. (2005). ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data. Bioinformatics, 21(13), 3043-3048. doi:10.1093/bioinformatics/bti476 es_ES
dc.description.references Storey, J. D., Xiao, W., Leek, J. T., Tompkins, R. G., & Davis, R. W. (2005). Significance analysis of time course microarray experiments. Proceedings of the National Academy of Sciences, 102(36), 12837-12842. doi:10.1073/pnas.0504609102 es_ES
dc.description.references Svendsen, C., Owen, J., Kille, P., Wren, J., Jonker, M. J., Headley, B. A., … Spurgeon, D. J. (2008). Comparative Transcriptomic Responses to Chronic Cadmium, Fluoranthene, and Atrazine Exposure in Lumbricus rubellus. Environmental Science & Technology, 42(11), 4208-4214. doi:10.1021/es702745d es_ES
dc.description.references Tai, Y. C., & Speed, T. P. (2006). A multivariate empirical Bayes statistic for replicated microarray time course data. The Annals of Statistics, 34(5), 2387-2412. doi:10.1214/009053606000000759 es_ES
dc.description.references Chuan Tai, Y., & Speed, T. P. (2008). On Gene Ranking Using Replicated Microarray Time Course Data. Biometrics, 65(1), 40-51. doi:10.1111/j.1541-0420.2008.01057.x es_ES
dc.description.references Yang, Y. H. (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, 30(4), 15e-15. doi:10.1093/nar/30.4.e15 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem