Mostrar el registro sencillo del ítem
dc.contributor.author | Nueda, María J. | es_ES |
dc.contributor.author | Ferrer Riquelme, Alberto José | es_ES |
dc.contributor.author | Conesa, Ana | es_ES |
dc.date.accessioned | 2013-12-23T08:12:09Z | |
dc.date.issued | 2011-11-14 | |
dc.identifier.issn | 1465-4644 | |
dc.identifier.uri | http://hdl.handle.net/10251/34665 | |
dc.description.abstract | Transcriptomic profiling experiments that aim to the identification of responsive genes in specific biological conditions are commonly set up under defined experimental designs that try to assess the effects of factors and their interactions on gene expression. Data from these controlled experiments, however, may also contain sources of unwanted noise that can distort the signal under study, affect the residuals of applied statistical models, and hamper data analysis. Commonly, normalization methods are applied to transcriptomics data to remove technical artifacts, but these are normally based on general assumptions of transcript distribution and greatly ignore both the characteristics of the experiment under consideration and the coordinative nature of gene expression. In this paper, we propose a novel methodology, ARSyN, for the preprocessing of microarray data that takes into account these 2 last aspects. By combining analysis of variance (ANOVA) modeling of gene expression values and multivariate analysis of estimated effects, the method identifies the nonstructured part of the signal associated to the experimental factors (the noise within the signal) and the structured variation of the ANOVA errors (the signal of the noise). By removing these noise fractions from the original data, we create a filtered data set that is rich in the information of interest and includes only the random noise required for inferential analysis. In this work, we focus on multifactorial time course microarray (MTCM) experiments with 2 factors: one quantitative such as time or dosage and the other qualitative, as tissue, strain, or treatment. However, the method can be used in other situations such as experiments with only one factor or more complex designs with more than 2 factors. The filtered data obtained after applying ARSyN can be further analyzed with the appropriate statistical technique to obtain the biological information required. To evaluate the performance of the filtering strategy, we have applied different statistical approaches for MTCM analysis to several real and simulateddata sets, studying also the efficiency of these techniques. By comparing the results obtained with the original and ARSyN filtered data and also with other filtering techniques, we can conclude that the proposed method increases the statistical power to detect biological signals, especially in cases where there are high levels of structural noise. Software for ARSyN is freely available at http://www.ua.es/personal/mj.nueda | es_ES |
dc.description.sponsorship | Spanish MICINN Project (BIO2008-04368-E and DPI2008-06880-C03-03/DPI). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Oxford University Press (OUP): Policy B - Oxford Open Option A | es_ES |
dc.relation.ispartof | Biostatistics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Analysis of variance | es_ES |
dc.subject | Batch effect | es_ES |
dc.subject | Microarrays | es_ES |
dc.subject | Principal components analysis | es_ES |
dc.subject | Systematic noise. | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | ARSyN: a method for the identification and removal of systematic noise in multifactorial time-course microarray experiments | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1093/biostatistics/kxr042 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2008-06880-C03-03/ES/TECNICAS ESTADISTICAS MULTIVARIANTES PARA EL CONOCIMIENTO, MONITORIZACION Y OPTIMIZACION DE BIOPROCESOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BIO2008-04368-E/ES/BIO2008-04368-E/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Nueda, MJ.; Ferrer Riquelme, AJ.; Conesa, A. (2011). ARSyN: a method for the identification and removal of systematic noise in multifactorial time-course microarray experiments. Biostatistics. 13(3):553-566. doi:10.1093/biostatistics/kxr042 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://biostatistics.oxfordjournals.org/content/13/3/553.full.pdf+html | es_ES |
dc.description.upvformatpinicio | 553 | es_ES |
dc.description.upvformatpfin | 566 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 242715 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Al-Shahrour, F., Minguez, P., Tárraga, J., Medina, I., Alloza, E., Montaner, D., & Dopazo, J. (2007). FatiGO +: a functional profiling tool for genomic data. Integration of functional annotation, regulatory motifs and interaction data with microarray experiments. Nucleic Acids Research, 35(suppl_2), W91-W96. doi:10.1093/nar/gkm260 | es_ES |
dc.description.references | Alter, O., Brown, P. O., & Botstein, D. (2000). Singular value decomposition for genome-wide expression data processing and modeling. Proceedings of the National Academy of Sciences, 97(18), 10101-10106. doi:10.1073/pnas.97.18.10101 | es_ES |
dc.description.references | Benito, M., Parker, J., Du, Q., Wu, J., Xiang, D., Perou, C. M., & Marron, J. S. (2003). Adjustment of systematic microarray data biases. Bioinformatics, 20(1), 105-114. doi:10.1093/bioinformatics/btg385 | es_ES |
dc.description.references | Brumós, J., Colmenero-Flores, J. M., Conesa, A., Izquierdo, P., Sánchez, G., Iglesias, D. J., … Talón, M. (2009). Membrane transporters and carbon metabolism implicated in chloride homeostasis differentiate salt stress responses in tolerant and sensitive Citrus rootstocks. Functional & Integrative Genomics, 9(3), 293-309. doi:10.1007/s10142-008-0107-6 | es_ES |
dc.description.references | Conesa, A., Nueda, M. J., Ferrer, A., & Talon, M. (2006). maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics, 22(9), 1096-1102. doi:10.1093/bioinformatics/btl056 | es_ES |
dc.description.references | Heijne, W. H. ., Stierum, R. H., Slijper, M., van Bladeren, P. J., & van Ommen, B. (2003). Toxicogenomics of bromobenzene hepatotoxicity: a combined transcriptomics and proteomics approach. Biochemical Pharmacology, 65(5), 857-875. doi:10.1016/s0006-2952(02)01613-1 | es_ES |
dc.description.references | Jansen, J. J., Hoefsloot, H. C. J., van der Greef, J., Timmerman, M. E., Westerhuis, J. A., & Smilde, A. K. (2005). ASCA: analysis of multivariate data obtained from an experimental design. Journal of Chemometrics, 19(9), 469-481. doi:10.1002/cem.952 | es_ES |
dc.description.references | Johnson, W. E., Li, C., & Rabinovic, A. (2006). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8(1), 118-127. doi:10.1093/biostatistics/kxj037 | es_ES |
dc.description.references | Leek, J. T., Scharpf, R. B., Bravo, H. C., Simcha, D., Langmead, B., Johnson, W. E., … Irizarry, R. A. (2010). Tackling the widespread and critical impact of batch effects in high-throughput data. Nature Reviews Genetics, 11(10), 733-739. doi:10.1038/nrg2825 | es_ES |
dc.description.references | Luo, J., Schumacher, M., Scherer, A., Sanoudou, D., Megherbi, D., Davison, T., … Zhang, J. (2010). A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data. The Pharmacogenomics Journal, 10(4), 278-291. doi:10.1038/tpj.2010.57 | es_ES |
dc.description.references | (2010). The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nature Biotechnology, 28(8), 827-838. doi:10.1038/nbt.1665 | es_ES |
dc.description.references | Morán, J. M., Ortiz-Ortiz, M. A., Ruiz-Mesa, L. M., & Fuentes, J. M. (2010). Nitric oxide in paraquat-mediated toxicity: A review. Journal of Biochemical and Molecular Toxicology, 24(6), 402-409. doi:10.1002/jbt.20348 | es_ES |
dc.description.references | Nueda, M. J., Conesa, A., Westerhuis, J. A., Hoefsloot, H. C. J., Smilde, A. K., Talón, M., & Ferrer, A. (2007). Discovering gene expression patterns in time course microarray experiments by ANOVA–SCA. Bioinformatics, 23(14), 1792-1800. doi:10.1093/bioinformatics/btm251 | es_ES |
dc.description.references | Rensink, W. A., Iobst, S., Hart, A., Stegalkina, S., Liu, J., & Buell, C. R. (2005). Gene expression profiling of potato responses to cold, heat, and salt stress. Functional & Integrative Genomics, 5(4), 201-207. doi:10.1007/s10142-005-0141-6 | es_ES |
dc.description.references | Smilde, A. K., Jansen, J. J., Hoefsloot, H. C. J., Lamers, R.-J. A. N., van der Greef, J., & Timmerman, M. E. (2005). ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data. Bioinformatics, 21(13), 3043-3048. doi:10.1093/bioinformatics/bti476 | es_ES |
dc.description.references | Storey, J. D., Xiao, W., Leek, J. T., Tompkins, R. G., & Davis, R. W. (2005). Significance analysis of time course microarray experiments. Proceedings of the National Academy of Sciences, 102(36), 12837-12842. doi:10.1073/pnas.0504609102 | es_ES |
dc.description.references | Svendsen, C., Owen, J., Kille, P., Wren, J., Jonker, M. J., Headley, B. A., … Spurgeon, D. J. (2008). Comparative Transcriptomic Responses to Chronic Cadmium, Fluoranthene, and Atrazine Exposure in Lumbricus rubellus. Environmental Science & Technology, 42(11), 4208-4214. doi:10.1021/es702745d | es_ES |
dc.description.references | Tai, Y. C., & Speed, T. P. (2006). A multivariate empirical Bayes statistic for replicated microarray time course data. The Annals of Statistics, 34(5), 2387-2412. doi:10.1214/009053606000000759 | es_ES |
dc.description.references | Chuan Tai, Y., & Speed, T. P. (2008). On Gene Ranking Using Replicated Microarray Time Course Data. Biometrics, 65(1), 40-51. doi:10.1111/j.1541-0420.2008.01057.x | es_ES |
dc.description.references | Yang, Y. H. (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, 30(4), 15e-15. doi:10.1093/nar/30.4.e15 | es_ES |