- -

Performance Evaluation of Fault Detection Methods for Wastewater Treatment Processes

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Performance Evaluation of Fault Detection Methods for Wastewater Treatment Processes

Show full item record

Corominas, L.; Villez, K.; Aguado García, D.; Rieger, L.; Rosén, C.; Vanrolleghem, PA. (2011). Performance Evaluation of Fault Detection Methods for Wastewater Treatment Processes. Biotechnology and Bioengineering. 108(2):333-344. doi:10.1002/bit.22953

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/34668

Files in this item

Item Metadata

Title: Performance Evaluation of Fault Detection Methods for Wastewater Treatment Processes
Author: Corominas, Lluís Villez, Kris Aguado García, Daniel Rieger, Leiv Rosén, Christian Vanrolleghem, Peter A.
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient
Issued date:
Abstract:
Several methods to detect faults have been developed in various fields, mainly in chemical and process engineering. However, minimal practical guidelines exist for their selection and application. This work presents an ...[+]
Subjects: Activated sludge , Data quality , Mathematical modeling , Monitoring , Process control , Actuator signals , Adaptive methods , Control loop , Control strategies , Detection methods , False acceptance , False alarms , Fault event , Method comparison , Monitoring and diagnosis , Non-detection , Performance evaluation , Practical guidelines , Process disturbances , Sensor and actuators , Sensor measurements , Shewhart , Simulated results , Simulation model , Simulation platform , Task groups , Univariate , Wastewater treatment plants , Wastewater treatment process , Activated sludge process , Actuators , Computer simulation , Fault detection , Process engineering , Sensors , Wastewater , Wastewater treatment , Water treatment plants , Airflow , Article , Engineering , Evaluation , Sensor , Simulation , Waste water management , Waste water treatment plant , Algorithms , Benchmarking , Quality Control , Waste Disposal, Fluid , Water Purification
Copyrigths: Cerrado
Source:
Biotechnology and Bioengineering. (issn: 0006-3592 )
DOI: 10.1002/bit.22953
Publisher:
Wiley-Blackwell
Publisher version: http://onlinelibrary.wiley.com/doi/10.1002/bit.22953/pdf
Project ID:
Canada Research Chair in Water Quality Modeling
NSERC
Government of Catalonia
European Union 6th framework project NEPTUNE
Thanks:
This research is supported by the Canada Research Chair in Water Quality Modeling and a NSERC Special Research Opportunities grant as part of the Canadian contribution to the European Union 6th framework project NEPTUNE. ...[+]
Type: Artículo

References

Aguado, D., & Rosen, C. (2008). Multivariate statistical monitoring of continuous wastewater treatment plants. Engineering Applications of Artificial Intelligence, 21(7), 1080-1091. doi:10.1016/j.engappai.2007.08.004

Aguado, D., Ferrer, A., Ferrer, J., & Seco, A. (2007). Multivariate SPC of a sequencing batch reactor for wastewater treatment. Chemometrics and Intelligent Laboratory Systems, 85(1), 82-93. doi:10.1016/j.chemolab.2006.05.003

BSM 2009 http://www.benchmarkwwtp.org [+]
Aguado, D., & Rosen, C. (2008). Multivariate statistical monitoring of continuous wastewater treatment plants. Engineering Applications of Artificial Intelligence, 21(7), 1080-1091. doi:10.1016/j.engappai.2007.08.004

Aguado, D., Ferrer, A., Ferrer, J., & Seco, A. (2007). Multivariate SPC of a sequencing batch reactor for wastewater treatment. Chemometrics and Intelligent Laboratory Systems, 85(1), 82-93. doi:10.1016/j.chemolab.2006.05.003

BSM 2009 http://www.benchmarkwwtp.org

Genovesi, A., Harmand, J., & Steyer, J.-P. (1999). A fuzzy logic based diagnosis system for the on-line supervision of an anaerobic digestor pilot-plant. Biochemical Engineering Journal, 3(3), 171-183. doi:10.1016/s1369-703x(99)00015-7

Lee, D. S., & Vanrolleghem, P. A. (2003). Monitoring of a sequencing batch reactor using adaptive multiblock principal component analysis. Biotechnology and Bioengineering, 82(4), 489-497. doi:10.1002/bit.10589

Lee, D. S., Park, J. M., & Vanrolleghem, P. A. (2005). Adaptive multiscale principal component analysis for on-line monitoring of a sequencing batch reactor. Journal of Biotechnology, 116(2), 195-210. doi:10.1016/j.jbiotec.2004.10.012

Lennox, J., & Rosen, C. (2002). Adaptive multiscale principal components analysis for online monitoring of wastewater treatment. Water Science and Technology, 45(4-5), 227-235. doi:10.2166/wst.2002.0593

Rieger, L., Alex, J., Winkler, S., Boehler, M., Thomann, M., & Siegrist, H. (2003). Progress in sensor technology - progress in process control? Part I: Sensor property investigation and classification. Water Science and Technology, 47(2), 103-112. doi:10.2166/wst.2003.0096

Rieger, L., Alex, J., Gujer, W., & Siegrist, H. (2006). Modelling of aeration systems at wastewater treatment plants. Water Science and Technology, 53(4-5), 439-447. doi:10.2166/wst.2006.100

Rosen, C., & Lennox, J. A. (2001). Multivariate and multiscale monitoring of wastewater treatment operation. Water Research, 35(14), 3402-3410. doi:10.1016/s0043-1354(01)00069-0

Rosen, C., Jeppsson, U., & Vanrolleghem, P. A. (2004). Towards a common benchmark for long-term process control and monitoring performance evaluation. Water Science and Technology, 50(11), 41-49. doi:10.2166/wst.2004.0669

Rosen, C., Rieger, L., Jeppsson, U., & Vanrolleghem, P. A. (2008). Adding realism to simulated sensors and actuators. Water Science and Technology, 57(3), 337-344. doi:10.2166/wst.2008.130

Rosen C Aguado D Comas J Alex J Copp JB Gernaey KV Jeppsson U Pons M-N Steyer J-P Vanrolleghem PA 2008b

Schraa, O., Tole, B., & Copp, J. B. (2006). Fault detection for control of wastewater treatment plants. Water Science and Technology, 53(4-5), 375-382. doi:10.2166/wst.2006.143

Venkatasubramanian, V., Rengaswamy, R., Yin, K., & Kavuri, S. N. (2003). A review of process fault detection and diagnosis. Computers & Chemical Engineering, 27(3), 293-311. doi:10.1016/s0098-1354(02)00160-6

Venkatasubramanian, V., Rengaswamy, R., & Kavuri, S. N. (2003). A review of process fault detection and diagnosis. Computers & Chemical Engineering, 27(3), 313-326. doi:10.1016/s0098-1354(02)00161-8

Venkatasubramanian, V., Rengaswamy, R., Kavuri, S. N., & Yin, K. (2003). A review of process fault detection and diagnosis. Computers & Chemical Engineering, 27(3), 327-346. doi:10.1016/s0098-1354(02)00162-x

Villez, K., Ruiz, M., Sin, G., Colomer, J., Rosén, C., & Vanrolleghem, P. A. (2008). Combining multiway principal component analysis (MPCA) and clustering for efficient data mining of historical data sets of SBR processes. Water Science and Technology, 57(10), 1659-1666. doi:10.2166/wst.2008.143

Yoo, C. K., Villez, K., Lee, I.-B., Rosén, C., & Vanrolleghem, P. A. (2007). Multi-model statistical process monitoring and diagnosis of a sequencing batch reactor. Biotechnology and Bioengineering, 96(4), 687-701. doi:10.1002/bit.21220

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record