- -

Performance Evaluation of Fault Detection Methods for Wastewater Treatment Processes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Performance Evaluation of Fault Detection Methods for Wastewater Treatment Processes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Corominas, Lluís es_ES
dc.contributor.author Villez, Kris es_ES
dc.contributor.author Aguado García, Daniel es_ES
dc.contributor.author Rieger, Leiv es_ES
dc.contributor.author Rosén, Christian es_ES
dc.contributor.author Vanrolleghem, Peter A. es_ES
dc.date.accessioned 2013-12-23T10:10:54Z
dc.date.issued 2011-02
dc.identifier.issn 0006-3592
dc.identifier.uri http://hdl.handle.net/10251/34668
dc.description.abstract Several methods to detect faults have been developed in various fields, mainly in chemical and process engineering. However, minimal practical guidelines exist for their selection and application. This work presents an index that allows for evaluating monitoring and diagnosis performance of fault detection methods, which takes into account several characteristics, such as false alarms, false acceptance, and undesirable switching from correct detection to non-detection during a fault event. The usefulness of the index to process engineering is demonstrated first by application to a simple example. Then, it is used to compare five univariate fault detection methods (Shewhart, EWMA, and residuals of EWMA) applied to the simulated results of the Benchmark Simulation Model No. 1 long-term (BSM1_LT). The BSM1_LT, provided by the IWA Task Group on Benchmarking of Control Strategies, is a simulation platform that allows for creating sensor and actuator faults and process disturbances in a wastewater treatment plant. The results from the method comparison using BSM1_LT show better performance to detect a sensor measurement shift for adaptive methods (residuals of EWMA) and when monitoring the actuator signals in a control loop (e.g., airflow). Overall, the proposed index is able to screen fault detection methods. © 2010 Wiley Periodicals, Inc. es_ES
dc.description.sponsorship This research is supported by the Canada Research Chair in Water Quality Modeling and a NSERC Special Research Opportunities grant as part of the Canadian contribution to the European Union 6th framework project NEPTUNE. Lluis Corominas benefits from the postdoctoral fellowship "Beatriu de Pinos" of the Government of Catalonia. The authors would like to thank Ulf Jeppsson for his contribution to the development of the BSM1_LT platform and the evaluation index. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-Blackwell es_ES
dc.relation.ispartof Biotechnology and Bioengineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Activated sludge es_ES
dc.subject Data quality es_ES
dc.subject Mathematical modeling es_ES
dc.subject Monitoring es_ES
dc.subject Process control es_ES
dc.subject Actuator signals es_ES
dc.subject Adaptive methods es_ES
dc.subject Control loop es_ES
dc.subject Control strategies es_ES
dc.subject Detection methods es_ES
dc.subject False acceptance es_ES
dc.subject False alarms es_ES
dc.subject Fault event es_ES
dc.subject Method comparison es_ES
dc.subject Monitoring and diagnosis es_ES
dc.subject Non-detection es_ES
dc.subject Performance evaluation es_ES
dc.subject Practical guidelines es_ES
dc.subject Process disturbances es_ES
dc.subject Sensor and actuators es_ES
dc.subject Sensor measurements es_ES
dc.subject Shewhart es_ES
dc.subject Simulated results es_ES
dc.subject Simulation model es_ES
dc.subject Simulation platform es_ES
dc.subject Task groups es_ES
dc.subject Univariate es_ES
dc.subject Wastewater treatment plants es_ES
dc.subject Wastewater treatment process es_ES
dc.subject Activated sludge process es_ES
dc.subject Actuators es_ES
dc.subject Computer simulation es_ES
dc.subject Fault detection es_ES
dc.subject Process engineering es_ES
dc.subject Sensors es_ES
dc.subject Wastewater es_ES
dc.subject Wastewater treatment es_ES
dc.subject Water treatment plants es_ES
dc.subject Airflow es_ES
dc.subject Article es_ES
dc.subject Engineering es_ES
dc.subject Evaluation es_ES
dc.subject Sensor es_ES
dc.subject Simulation es_ES
dc.subject Waste water management es_ES
dc.subject Waste water treatment plant es_ES
dc.subject Algorithms es_ES
dc.subject Benchmarking es_ES
dc.subject Quality Control es_ES
dc.subject Waste Disposal, Fluid es_ES
dc.subject Water Purification es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Performance Evaluation of Fault Detection Methods for Wastewater Treatment Processes es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/bit.22953
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP6/36845/EU/New sustainable concepts and processes for optimization and upgrading municipal wastewater and sludge treatment/NEPTUNE/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.description.bibliographicCitation Corominas, L.; Villez, K.; Aguado García, D.; Rieger, L.; Rosén, C.; Vanrolleghem, PA. (2011). Performance Evaluation of Fault Detection Methods for Wastewater Treatment Processes. Biotechnology and Bioengineering. 108(2):333-344. doi:10.1002/bit.22953 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://onlinelibrary.wiley.com/doi/10.1002/bit.22953/pdf es_ES
dc.description.upvformatpinicio 333 es_ES
dc.description.upvformatpfin 344 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 108 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 39910
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat de Catalunya es_ES
dc.contributor.funder Natural Sciences and Engineering Research Council of Canada es_ES
dc.contributor.funder Social Sciences and Humanities Research Council of Canada es_ES
dc.description.references Aguado, D., & Rosen, C. (2008). Multivariate statistical monitoring of continuous wastewater treatment plants. Engineering Applications of Artificial Intelligence, 21(7), 1080-1091. doi:10.1016/j.engappai.2007.08.004 es_ES
dc.description.references Aguado, D., Ferrer, A., Ferrer, J., & Seco, A. (2007). Multivariate SPC of a sequencing batch reactor for wastewater treatment. Chemometrics and Intelligent Laboratory Systems, 85(1), 82-93. doi:10.1016/j.chemolab.2006.05.003 es_ES
dc.description.references BSM 2009 http://www.benchmarkwwtp.org es_ES
dc.description.references Genovesi, A., Harmand, J., & Steyer, J.-P. (1999). A fuzzy logic based diagnosis system for the on-line supervision of an anaerobic digestor pilot-plant. Biochemical Engineering Journal, 3(3), 171-183. doi:10.1016/s1369-703x(99)00015-7 es_ES
dc.description.references Lee, D. S., & Vanrolleghem, P. A. (2003). Monitoring of a sequencing batch reactor using adaptive multiblock principal component analysis. Biotechnology and Bioengineering, 82(4), 489-497. doi:10.1002/bit.10589 es_ES
dc.description.references Lee, D. S., Park, J. M., & Vanrolleghem, P. A. (2005). Adaptive multiscale principal component analysis for on-line monitoring of a sequencing batch reactor. Journal of Biotechnology, 116(2), 195-210. doi:10.1016/j.jbiotec.2004.10.012 es_ES
dc.description.references Lennox, J., & Rosen, C. (2002). Adaptive multiscale principal components analysis for online monitoring of wastewater treatment. Water Science and Technology, 45(4-5), 227-235. doi:10.2166/wst.2002.0593 es_ES
dc.description.references Rieger, L., Alex, J., Winkler, S., Boehler, M., Thomann, M., & Siegrist, H. (2003). Progress in sensor technology - progress in process control? Part I: Sensor property investigation and classification. Water Science and Technology, 47(2), 103-112. doi:10.2166/wst.2003.0096 es_ES
dc.description.references Rieger, L., Alex, J., Gujer, W., & Siegrist, H. (2006). Modelling of aeration systems at wastewater treatment plants. Water Science and Technology, 53(4-5), 439-447. doi:10.2166/wst.2006.100 es_ES
dc.description.references Rosen, C., & Lennox, J. A. (2001). Multivariate and multiscale monitoring of wastewater treatment operation. Water Research, 35(14), 3402-3410. doi:10.1016/s0043-1354(01)00069-0 es_ES
dc.description.references Rosen, C., Jeppsson, U., & Vanrolleghem, P. A. (2004). Towards a common benchmark for long-term process control and monitoring performance evaluation. Water Science and Technology, 50(11), 41-49. doi:10.2166/wst.2004.0669 es_ES
dc.description.references Rosen, C., Rieger, L., Jeppsson, U., & Vanrolleghem, P. A. (2008). Adding realism to simulated sensors and actuators. Water Science and Technology, 57(3), 337-344. doi:10.2166/wst.2008.130 es_ES
dc.description.references Rosen C Aguado D Comas J Alex J Copp JB Gernaey KV Jeppsson U Pons M-N Steyer J-P Vanrolleghem PA 2008b es_ES
dc.description.references Schraa, O., Tole, B., & Copp, J. B. (2006). Fault detection for control of wastewater treatment plants. Water Science and Technology, 53(4-5), 375-382. doi:10.2166/wst.2006.143 es_ES
dc.description.references Venkatasubramanian, V., Rengaswamy, R., Yin, K., & Kavuri, S. N. (2003). A review of process fault detection and diagnosis. Computers & Chemical Engineering, 27(3), 293-311. doi:10.1016/s0098-1354(02)00160-6 es_ES
dc.description.references Venkatasubramanian, V., Rengaswamy, R., & Kavuri, S. N. (2003). A review of process fault detection and diagnosis. Computers & Chemical Engineering, 27(3), 313-326. doi:10.1016/s0098-1354(02)00161-8 es_ES
dc.description.references Venkatasubramanian, V., Rengaswamy, R., Kavuri, S. N., & Yin, K. (2003). A review of process fault detection and diagnosis. Computers & Chemical Engineering, 27(3), 327-346. doi:10.1016/s0098-1354(02)00162-x es_ES
dc.description.references Villez, K., Ruiz, M., Sin, G., Colomer, J., Rosén, C., & Vanrolleghem, P. A. (2008). Combining multiway principal component analysis (MPCA) and clustering for efficient data mining of historical data sets of SBR processes. Water Science and Technology, 57(10), 1659-1666. doi:10.2166/wst.2008.143 es_ES
dc.description.references Yoo, C. K., Villez, K., Lee, I.-B., Rosén, C., & Vanrolleghem, P. A. (2007). Multi-model statistical process monitoring and diagnosis of a sequencing batch reactor. Biotechnology and Bioengineering, 96(4), 687-701. doi:10.1002/bit.21220 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem