- -

Arrangement of Type IV Collagen on NH2 and COOH Functionalized Surfaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Arrangement of Type IV Collagen on NH2 and COOH Functionalized Surfaces

Show full item record

Miranda Coelho, N.; González García, C.; Salmerón Sánchez, M.; Altankov, G. (2011). Arrangement of Type IV Collagen on NH2 and COOH Functionalized Surfaces. Biotechnology and Bioengineering. 108(12):3009-3018. doi:10.1002/bit.23265

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/34674

Files in this item

Item Metadata

Title: Arrangement of Type IV Collagen on NH2 and COOH Functionalized Surfaces
Author: Miranda Coelho, Nuno González García, Cristina Salmerón Sánchez, Manuel Altankov, George
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular
Issued date:
Abstract:
Apart from the paradigm that cell-biomaterials interaction depends on the adsorption of soluble adhesive proteins we anticipate that upon distinct conditions also other, less soluble ECM proteins such as collagens, associate ...[+]
Subjects: AFM , Collagen type IV , Endothelial cells , SAMs , Surface-induced protein assembly , Vascular grafts , Actin cytoskeleton , Adhesive proteins , Adsorption patterns , Basement membrane , Cardiovascular implants , Cell spreading , Cellular response , ECM proteins , Focal adhesion kinase , Focal adhesions , Functionalizations , Functionalized surfaces , Human umbilical vein endothelial cells , I-V behavior , Integrins , Matrix proteins , Nano scale , New model , Positively charged , Protein conformation , Adhesion , Adsorption , Atomic force microscopy , Biological materials , Collagen , Complexation , Focusing , Grafts , Phosphorylation , Self assembled monolayers , Alpha1 integrin , Alpha2 integrin , Amine , Biomaterial , Carboxyl group , Collagen type 4 , Fluorescein isothiocyanate , Functional group , Article , Bioengineering , Blood vessel graft , Cell interaction , Cell structure , Cell surface , Endothelium cell , Enzyme phosphorylation , Human , Human cell , Immunofluorescence , Surface property , Umbilical vein endothelial cell , Wettability , Coated Materials, Biocompatible , Humans , Microscopy, Atomic Force , Protein Binding , Surface Properties
Copyrigths: Cerrado
Source:
Biotechnology and Bioengineering. (issn: 0006-3592 )
DOI: 10.1002/bit.23265
Publisher:
Wiley-Blackwell
Publisher version: http://onlinelibrary.wiley.com/doi/10.1002/bit.23265/pdf
Project ID:
info:eu-repo/grantAgreement/MICINN//MAT2009-14440-C02-01/ES/Dinamica De Las Proteinas De La Matriz En La Interfase Celula-Material/ /
info:eu-repo/grantAgreement/MICINN//MAT2009-14440-C02-02/ES/Dinamica De Las Proteinas De La Matriz En La Interfase Celula-Material/
Thanks:
AFM was performed under the technical guidance of the Microscopy Service at the Universidad Politecnica de Valencia, whose advice is greatly appreciated. The work was supported by the Spanish Ministry of Science and ...[+]
Type: Artículo

References

Abrams, G. A., Goodman, S. L., Nealey, P. F., Franco, M., & Murphy, C. J. (2000). Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque. Cell and Tissue Research, 299(1), 39-46. doi:10.1007/s004410050004

Allen, L. T., Tosetto, M., Miller, I. S., O’Connor, D. P., Penney, S. C., Lynch, I., … Gallagher, W. M. (2006). Surface-induced changes in protein adsorption and implications for cellular phenotypic responses to surface interaction. Biomaterials, 27(16), 3096-3108. doi:10.1016/j.biomaterials.2006.01.019

Altankov, G., & Groth, T. (1997). Fibronectin matrix formation by human fibroblasts on surfaces varying in wettability. Journal of Biomaterials Science, Polymer Edition, 8(4), 299-310. doi:10.1163/156856296x00318 [+]
Abrams, G. A., Goodman, S. L., Nealey, P. F., Franco, M., & Murphy, C. J. (2000). Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque. Cell and Tissue Research, 299(1), 39-46. doi:10.1007/s004410050004

Allen, L. T., Tosetto, M., Miller, I. S., O’Connor, D. P., Penney, S. C., Lynch, I., … Gallagher, W. M. (2006). Surface-induced changes in protein adsorption and implications for cellular phenotypic responses to surface interaction. Biomaterials, 27(16), 3096-3108. doi:10.1016/j.biomaterials.2006.01.019

Altankov, G., & Groth, T. (1997). Fibronectin matrix formation by human fibroblasts on surfaces varying in wettability. Journal of Biomaterials Science, Polymer Edition, 8(4), 299-310. doi:10.1163/156856296x00318

Altankov, G., Grinnell, F., & Groth, T. (1996). Studies on the biocompatibility of materials: Fibroblast reorganization of substratum-bound fibronectin on surfaces varying in wettability. Journal of Biomedical Materials Research, 30(3), 385-391. doi:10.1002/(sici)1097-4636(199603)30:3<385::aid-jbm13>3.0.co;2-j

Baber, U., Kini, A. S., & Sharma, S. K. (2010). Stenting of complex lesions: an overview. Nature Reviews Cardiology, 7(9), 485-496. doi:10.1038/nrcardio.2010.116

Barczyk, M., Carracedo, S., & Gullberg, D. (2009). Integrins. Cell and Tissue Research, 339(1), 269-280. doi:10.1007/s00441-009-0834-6

Chan, V., Graves, D. J., & McKenzie, S. E. (1995). The biophysics of DNA hybridization with immobilized oligonucleotide probes. Biophysical Journal, 69(6), 2243-2255. doi:10.1016/s0006-3495(95)80095-0

Charonis, A., Sideraki, V., Kaltezioti, V., Alberti, A., Vlahakos, D., Wu, K., & Tsilibary, E. (2005). Basement Membrane Peptides: Functional Considerations and Biomedical Applications in Autoimmunity. Current Medicinal Chemistry, 12(13), 1495-1502. doi:10.2174/0929867054039071

Chen, C. H., & Hansma, H. G. (2000). Basement Membrane Macromolecules: Insights from Atomic Force Microscopy. Journal of Structural Biology, 131(1), 44-55. doi:10.1006/jsbi.2000.4252

Chen, J. M., & Little, C. D. (1985). Cells that emerge from embryonic explants produce fibers of type IV collagen. The Journal of Cell Biology, 101(4), 1175-1181. doi:10.1083/jcb.101.4.1175

Coelho, N., González-García, C., Planell, J., Salmerón-Sánchez, M., & Altankov, G. (2010). Different assembly of type IV collagen on hydrophilic and hydrophobic substrata alters endothelial cells interaction. European Cells and Materials, 19, 262-272. doi:10.22203/ecm.v019a25

Cukierman, E. (2001). Taking Cell-Matrix Adhesions to the Third Dimension. Science, 294(5547), 1708-1712. doi:10.1126/science.1064829

Daley, W. P., Peters, S. B., & Larsen, M. (2008). Extracellular matrix dynamics in development and regenerative medicine. Journal of Cell Science, 121(3), 255-264. doi:10.1242/jcs.006064

De Mel, A., Jell, G., Stevens, M. M., & Seifalian, A. M. (2008). Biofunctionalization of Biomaterials for Accelerated in Situ Endothelialization: A Review. Biomacromolecules, 9(11), 2969-2979. doi:10.1021/bm800681k

Dvir, T., Timko, B. P., Kohane, D. S., & Langer, R. (2010). Nanotechnological strategies for engineering complex tissues. Nature Nanotechnology, 6(1), 13-22. doi:10.1038/nnano.2010.246

Fears, K. P., Creager, S. E., & Latour, R. A. (2008). Determination of the Surface pKof Carboxylic- and Amine-Terminated Alkanethiols Using Surface Plasmon Resonance Spectroscopy. Langmuir, 24(3), 837-843. doi:10.1021/la701760s

FLEISCHMAJER, R., PERLISH, J. S., MACDONALD, D. E., SCHECHTER, A., MURDOCH, A. D., IOZZO, R. V., & YAMADA, Y. (1998). There Is Binding of Collagen IV to beta1 Integrin during Early Skin Basement Membrane Assembly. Annals of the New York Academy of Sciences, 857(1 MORPHOGENESIS), 212-227. doi:10.1111/j.1749-6632.1998.tb10118.x

Gelse, K. (2003). Collagens—structure, function, and biosynthesis. Advanced Drug Delivery Reviews, 55(12), 1531-1546. doi:10.1016/j.addr.2003.08.002

Griffith, L. G. (2002). Tissue Engineering--Current Challenges and Expanding Opportunities. Science, 295(5557), 1009-1014. doi:10.1126/science.1069210

Groth, T., Zlatanov, I., & Altankov, G. (1995). Adhesion of human peripheral lymphocytes on biomaterials preadsorbed with fibronectin and vitronectin. Journal of Biomaterials Science, Polymer Edition, 6(8), 729-739. doi:10.1163/156856295x00111

Groth, T., & Altankov, G. (1996). Studies on cell-biomaterial interaction: role of tyrosine phosphorylation during fibroblast spreading on surfaces varying in wettability. Biomaterials, 17(12), 1227-1234. doi:10.1016/0142-9612(96)84943-x

Guan, J.-L. (1997). Focal adhesion kinase in integrin signaling. Matrix Biology, 16(4), 195-200. doi:10.1016/s0945-053x(97)90008-1

Gurdak, E., Rouxhet, P. G., & Dupont-Gillain, C. C. (2006). Factors and mechanisms determining the formation of fibrillar collagen structures in adsorbed phases. Colloids and Surfaces B: Biointerfaces, 52(1), 76-88. doi:10.1016/j.colsurfb.2006.07.011

Gustavsson, J., Altankov, G., Errachid, A., Samitier, J., Planell, J. A., & Engel, E. (2008). Surface modifications of silicon nitride for cellular biosensor applications. Journal of Materials Science: Materials in Medicine, 19(4), 1839-1850. doi:10.1007/s10856-008-3384-7

Rodríguez Hernández, J. C., Rico, P., Moratal, D., Monleón Pradas, M., & Salmerón-Sánchez, M. (2009). Fibrinogen Patterns and Activity on Substrates with Tailored Hydroxy Density. Macromolecular Bioscience, 9(8), 766-775. doi:10.1002/mabi.200800332

Hynes, R. O. (2002). Integrins. Cell, 110(6), 673-687. doi:10.1016/s0092-8674(02)00971-6

Kalluri, R. (2003). Basement membranes: structure, assembly and role in tumour angiogenesis. Nature Reviews Cancer, 3(6), 422-433. doi:10.1038/nrc1094

Käpylä, J., Ivaska, J., Riikonen, R., Nykvist, P., Pentikäinen, O., Johnson, M., & Heino, J. (2000). Integrin α2I Domain Recognizes Type I and Type IV Collagens by Different Mechanisms. Journal of Biological Chemistry, 275(5), 3348-3354. doi:10.1074/jbc.275.5.3348

Keresztes, Z., Rouxhet, P. G., Remacle, C., & Dupont-Gillain, C. (2005). Supramolecular assemblies of adsorbed collagen affect the adhesion of endothelial cells. Journal of Biomedical Materials Research Part A, 76A(2), 223-233. doi:10.1002/jbm.a.30472

KERN, A., EBLE, J., GOLBIK, R., & KUHN, K. (1993). Interaction of type IV collagen with the isolated integrins alpha1beta1 and alpha2beta1. European Journal of Biochemistry, 215(1), 151-159. doi:10.1111/j.1432-1033.1993.tb18017.x

Keselowsky, B. G., Collard, D. M., & Garcia, A. J. (2005). Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proceedings of the National Academy of Sciences, 102(17), 5953-5957. doi:10.1073/pnas.0407356102

Khoshnoodi, J., Pedchenko, V., & Hudson, B. G. (2008). Mammalian collagen IV. Microscopy Research and Technique, 71(5), 357-370. doi:10.1002/jemt.20564

Kruegel, J., & Miosge, N. (2010). Basement membrane components are key players in specialized extracellular matrices. Cellular and Molecular Life Sciences, 67(17), 2879-2895. doi:10.1007/s00018-010-0367-x

Kühn, K. (1995). Basement membrane (type IV) collagen. Matrix Biology, 14(6), 439-445. doi:10.1016/0945-053x(95)90001-2

LeBleu, V. S., MacDonald, B., & Kalluri, R. (2007). Structure and Function of Basement Membranes. Experimental Biology and Medicine, 232(9), 1121-1129. doi:10.3181/0703-mr-72

Lee, M. H., Ducheyne, P., Lynch, L., Boettiger, D., & Composto, R. J. (2006). Effect of biomaterial surface properties on fibronectin–α5β1 integrin interaction and cellular attachment. Biomaterials, 27(9), 1907-1916. doi:10.1016/j.biomaterials.2005.11.003

Li, Y., Asadi, A., Monroe, M. R., & Douglas, E. P. (2009). pH effects on collagen fibrillogenesis in vitro: Electrostatic interactions and phosphate binding. Materials Science and Engineering: C, 29(5), 1643-1649. doi:10.1016/j.msec.2009.01.001

Ludwig, N. S., Yoder, C., McConney, M., Vargo, T. G., & Kader, K. N. (2006). Directed type IV collagen self-assembly on hydroxylated PTFE. Journal of Biomedical Materials Research Part A, 78A(3), 615-619. doi:10.1002/jbm.a.30776

Michael, K. E., Dumbauld, D. W., Burns, K. L., Hanks, S. K., & García, A. J. (2009). Focal Adhesion Kinase Modulates Cell Adhesion Strengthening via Integrin Activation. Molecular Biology of the Cell, 20(9), 2508-2519. doi:10.1091/mbc.e08-01-0076

Mrksich, M. (2009). Using self-assembled monolayers to model the extracellular matrix. Acta Biomaterialia, 5(3), 832-841. doi:10.1016/j.actbio.2009.01.016

Popova, S. N., Lundgren-Åkerlund, E., Wiig, H., & Gullberg, D. (2007). Physiology and pathology of collagen receptors. Acta Physiologica, 190(3), 179-187. doi:10.1111/j.1748-1716.2007.01718.x

Rivron, N., Liu, J., Rouwkema, J., de Boer, J., & van Blitterswijk, C. (2008). Engineering vascularised tissues in vitro. European Cells and Materials, 15, 27-40. doi:10.22203/ecm.v015a03

Salchert, K., Streller, U., Pompe, T., Herold, N., Grimmer, M., & Werner, C. (2004). In Vitro Reconstitution of Fibrillar Collagen Type I Assemblies at Reactive Polymer Surfaces. Biomacromolecules, 5(4), 1340-1350. doi:10.1021/bm0499031

SEPHEL, G., KENNEDY, R., & KUDRAVI, S. (1996). Expression of capillary basement membrane components during sequential phases of wound angiogenesis. Matrix Biology, 15(4), 263-279. doi:10.1016/s0945-053x(96)90117-1

Shamhart, P. E., & Meszaros, J. G. (2010). Non-fibrillar collagens: Key mediators of post-infarction cardiac remodeling? Journal of Molecular and Cellular Cardiology, 48(3), 530-537. doi:10.1016/j.yjmcc.2009.06.017

Sherratt, M. J., Bax, D. V., Chaudhry, S. S., Hodson, N., Lu, J. R., Saravanapavan, P., & Kielty, C. M. (2005). Substrate chemistry influences the morphology and biological function of adsorbed extracellular matrix assemblies. Biomaterials, 26(34), 7192-7206. doi:10.1016/j.biomaterials.2005.05.010

SIPE, J. D. (2002). Tissue Engineering and Reparative Medicine. Annals of the New York Academy of Sciences, 961(1), 1-9. doi:10.1111/j.1749-6632.2002.tb03040.x

Sung, K. E., Su, G., Pehlke, C., Trier, S. M., Eliceiri, K. W., Keely, P. J., … Beebe, D. J. (2009). Control of 3-dimensional collagen matrix polymerization for reproducible human mammary fibroblast cell culture in microfluidic devices. Biomaterials, 30(27), 4833-4841. doi:10.1016/j.biomaterials.2009.05.043

Tang, L., Thevenot, P., & Hu, W. (2008). Surface Chemistry Influences Implant Biocompatibility. Current Topics in Medicinal Chemistry, 8(4), 270-280. doi:10.2174/156802608783790901

TIMPL, R., OBERBÄUMER, I., MARK, H., BODE, W., WICK, G., WEBER, S., & ENGEL, J. (1985). Structure and Biology of the Globular Domain of Basement Membrane Type IV Collagen. Annals of the New York Academy of Sciences, 460(1 Biology, Chem), 58-72. doi:10.1111/j.1749-6632.1985.tb51157.x

Toromanov, G., González-García, C., Altankov, G., & Salmerón-Sánchez, M. (2010). Vitronectin activity on polymer substrates with controlled –OH density. Polymer, 51(11), 2329-2336. doi:10.1016/j.polymer.2010.03.041

Vandenberg, P., Kern, A., Ries, A., Luckenbill-Edds, L., Mann, K., & Kühn, K. (1991). Characterization of a type IV collagen major cell binding site with affinity to the alpha 1 beta 1 and the alpha 2 beta 1 integrins. The Journal of Cell Biology, 113(6), 1475-1483. doi:10.1083/jcb.113.6.1475

Werner, C. (Ed.). (2006). Polymers for Regenerative Medicine. Advances in Polymer Science. doi:10.1007/11604228

Westhoff, M. A., Serrels, B., Fincham, V. J., Frame, M. C., & Carragher, N. O. (2004). Src-Mediated Phosphorylation of Focal Adhesion Kinase Couples Actin and Adhesion Dynamics to Survival Signaling. Molecular and Cellular Biology, 24(18), 8113-8133. doi:10.1128/mcb.24.18.8113-8133.2004

White, D. J., Puranen, S., Johnson, M. S., & Heino, J. (2004). The collagen receptor subfamily of the integrins. The International Journal of Biochemistry & Cell Biology, 36(8), 1405-1410. doi:10.1016/j.biocel.2003.08.016

Xu, L.-C., & Siedlecki, C. A. (2007). Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials, 28(22), 3273-3283. doi:10.1016/j.biomaterials.2007.03.032

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record