- -

Arrangement of Type IV Collagen on NH2 and COOH Functionalized Surfaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Arrangement of Type IV Collagen on NH2 and COOH Functionalized Surfaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Miranda Coelho, Nuno es_ES
dc.contributor.author González García, Cristina es_ES
dc.contributor.author Salmerón Sánchez, Manuel es_ES
dc.contributor.author Altankov, George es_ES
dc.date.accessioned 2013-12-26T08:35:15Z
dc.date.issued 2011-07
dc.identifier.issn 0006-3592
dc.identifier.uri http://hdl.handle.net/10251/34674
dc.description.abstract Apart from the paradigm that cell-biomaterials interaction depends on the adsorption of soluble adhesive proteins we anticipate that upon distinct conditions also other, less soluble ECM proteins such as collagens, associate with the biomaterials interface with consequences for cellular response that might be of significant bioengineering interest. Using atomic force microscopy (AFM) we seek to follow the nanoscale behavior of adsorbed type IV collagen (Col IV)-a unique multifunctional matrix protein involved in the organization of basement membranes (BMs) including vascular ones. We have previously shown that substratum wettability significantly affects Col IV adsorption pattern, and in turn alters endothelial cells interaction. Here we introduce two new model surfaces based on self-assembled monolayers (SAMs), a positively charged -NH 2, and negatively charged -COOH surface, to learn more about their particular effect on Col IV behavior. AFM studies revealed distinct pattern of Col IV assembly onto the two SAMs resembling different aspects of network-like structure or aggregates (suggesting altered protein conformation). Moreover, the amount of adsorbed FITC-labeled Col IV was quantified and showed about twice more protein on NH 2 substrata. Human umbilical vein endothelial cells attached less efficiently to Col IV adsorbed on negatively charged COOH surface judged by altered cell spreading, focal adhesions formation, and actin cytoskeleton development. Immunofluorescence studies also revealed better Col IV recognition by both ¿ 1 and ¿ 2 integrins on positively charged NH 2 substrata resulting in higher phosphorylated focal adhesion kinase recruitment in the focal adhesion complexes. On COOH surface, no integrin clustering was observed. Taken altogether these results, point to the possibility that combined NH 2 and Col IV functionalization may support endothelization of cardiovascular implants. © 2011 Wiley Periodicals, Inc. es_ES
dc.description.sponsorship AFM was performed under the technical guidance of the Microscopy Service at the Universidad Politecnica de Valencia, whose advice is greatly appreciated. The work was supported by the Spanish Ministry of Science and Innovation through projects MAT2009-14440-C02-01 and MAT2009-14440-C02-02. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-Blackwell es_ES
dc.relation.ispartof Biotechnology and Bioengineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject AFM es_ES
dc.subject Collagen type IV es_ES
dc.subject Endothelial cells es_ES
dc.subject SAMs es_ES
dc.subject Surface-induced protein assembly es_ES
dc.subject Vascular grafts es_ES
dc.subject Actin cytoskeleton es_ES
dc.subject Adhesive proteins es_ES
dc.subject Adsorption patterns es_ES
dc.subject Basement membrane es_ES
dc.subject Cardiovascular implants es_ES
dc.subject Cell spreading es_ES
dc.subject Cellular response es_ES
dc.subject ECM proteins es_ES
dc.subject Focal adhesion kinase es_ES
dc.subject Focal adhesions es_ES
dc.subject Functionalizations es_ES
dc.subject Functionalized surfaces es_ES
dc.subject Human umbilical vein endothelial cells es_ES
dc.subject I-V behavior es_ES
dc.subject Integrins es_ES
dc.subject Matrix proteins es_ES
dc.subject Nano scale es_ES
dc.subject New model es_ES
dc.subject Positively charged es_ES
dc.subject Protein conformation es_ES
dc.subject Adhesion es_ES
dc.subject Adsorption es_ES
dc.subject Atomic force microscopy es_ES
dc.subject Biological materials es_ES
dc.subject Collagen es_ES
dc.subject Complexation es_ES
dc.subject Focusing es_ES
dc.subject Grafts es_ES
dc.subject Phosphorylation es_ES
dc.subject Self assembled monolayers es_ES
dc.subject Alpha1 integrin es_ES
dc.subject Alpha2 integrin es_ES
dc.subject Amine es_ES
dc.subject Biomaterial es_ES
dc.subject Carboxyl group es_ES
dc.subject Collagen type 4 es_ES
dc.subject Fluorescein isothiocyanate es_ES
dc.subject Functional group es_ES
dc.subject Article es_ES
dc.subject Bioengineering es_ES
dc.subject Blood vessel graft es_ES
dc.subject Cell interaction es_ES
dc.subject Cell structure es_ES
dc.subject Cell surface es_ES
dc.subject Endothelium cell es_ES
dc.subject Enzyme phosphorylation es_ES
dc.subject Human es_ES
dc.subject Human cell es_ES
dc.subject Immunofluorescence es_ES
dc.subject Surface property es_ES
dc.subject Umbilical vein endothelial cell es_ES
dc.subject Wettability es_ES
dc.subject Coated Materials, Biocompatible es_ES
dc.subject Humans es_ES
dc.subject Microscopy, Atomic Force es_ES
dc.subject Protein Binding es_ES
dc.subject Surface Properties es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Arrangement of Type IV Collagen on NH2 and COOH Functionalized Surfaces es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/bit.23265
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-14440-C02-01/ES/Dinamica De Las Proteinas De La Matriz En La Interfase Celula-Material/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-14440-C02-02/ES/Dinamica De Las Proteinas De La Matriz En La Interfase Celula-Material/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.description.bibliographicCitation Miranda Coelho, N.; González García, C.; Salmerón Sánchez, M.; Altankov, G. (2011). Arrangement of Type IV Collagen on NH2 and COOH Functionalized Surfaces. Biotechnology and Bioengineering. 108(12):3009-3018. doi:10.1002/bit.23265 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://onlinelibrary.wiley.com/doi/10.1002/bit.23265/pdf es_ES
dc.description.upvformatpinicio 3009 es_ES
dc.description.upvformatpfin 3018 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 108 es_ES
dc.description.issue 12 es_ES
dc.relation.senia 219972
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Abrams, G. A., Goodman, S. L., Nealey, P. F., Franco, M., & Murphy, C. J. (2000). Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque. Cell and Tissue Research, 299(1), 39-46. doi:10.1007/s004410050004 es_ES
dc.description.references Allen, L. T., Tosetto, M., Miller, I. S., O’Connor, D. P., Penney, S. C., Lynch, I., … Gallagher, W. M. (2006). Surface-induced changes in protein adsorption and implications for cellular phenotypic responses to surface interaction. Biomaterials, 27(16), 3096-3108. doi:10.1016/j.biomaterials.2006.01.019 es_ES
dc.description.references Altankov, G., & Groth, T. (1997). Fibronectin matrix formation by human fibroblasts on surfaces varying in wettability. Journal of Biomaterials Science, Polymer Edition, 8(4), 299-310. doi:10.1163/156856296x00318 es_ES
dc.description.references Altankov, G., Grinnell, F., & Groth, T. (1996). Studies on the biocompatibility of materials: Fibroblast reorganization of substratum-bound fibronectin on surfaces varying in wettability. Journal of Biomedical Materials Research, 30(3), 385-391. doi:10.1002/(sici)1097-4636(199603)30:3<385::aid-jbm13>3.0.co;2-j es_ES
dc.description.references Baber, U., Kini, A. S., & Sharma, S. K. (2010). Stenting of complex lesions: an overview. Nature Reviews Cardiology, 7(9), 485-496. doi:10.1038/nrcardio.2010.116 es_ES
dc.description.references Barczyk, M., Carracedo, S., & Gullberg, D. (2009). Integrins. Cell and Tissue Research, 339(1), 269-280. doi:10.1007/s00441-009-0834-6 es_ES
dc.description.references Chan, V., Graves, D. J., & McKenzie, S. E. (1995). The biophysics of DNA hybridization with immobilized oligonucleotide probes. Biophysical Journal, 69(6), 2243-2255. doi:10.1016/s0006-3495(95)80095-0 es_ES
dc.description.references Charonis, A., Sideraki, V., Kaltezioti, V., Alberti, A., Vlahakos, D., Wu, K., & Tsilibary, E. (2005). Basement Membrane Peptides: Functional Considerations and Biomedical Applications in Autoimmunity. Current Medicinal Chemistry, 12(13), 1495-1502. doi:10.2174/0929867054039071 es_ES
dc.description.references Chen, C. H., & Hansma, H. G. (2000). Basement Membrane Macromolecules: Insights from Atomic Force Microscopy. Journal of Structural Biology, 131(1), 44-55. doi:10.1006/jsbi.2000.4252 es_ES
dc.description.references Chen, J. M., & Little, C. D. (1985). Cells that emerge from embryonic explants produce fibers of type IV collagen. The Journal of Cell Biology, 101(4), 1175-1181. doi:10.1083/jcb.101.4.1175 es_ES
dc.description.references Coelho, N., González-García, C., Planell, J., Salmerón-Sánchez, M., & Altankov, G. (2010). Different assembly of type IV collagen on hydrophilic and hydrophobic substrata alters endothelial cells interaction. European Cells and Materials, 19, 262-272. doi:10.22203/ecm.v019a25 es_ES
dc.description.references Cukierman, E. (2001). Taking Cell-Matrix Adhesions to the Third Dimension. Science, 294(5547), 1708-1712. doi:10.1126/science.1064829 es_ES
dc.description.references Daley, W. P., Peters, S. B., & Larsen, M. (2008). Extracellular matrix dynamics in development and regenerative medicine. Journal of Cell Science, 121(3), 255-264. doi:10.1242/jcs.006064 es_ES
dc.description.references De Mel, A., Jell, G., Stevens, M. M., & Seifalian, A. M. (2008). Biofunctionalization of Biomaterials for Accelerated in Situ Endothelialization: A Review. Biomacromolecules, 9(11), 2969-2979. doi:10.1021/bm800681k es_ES
dc.description.references Dvir, T., Timko, B. P., Kohane, D. S., & Langer, R. (2010). Nanotechnological strategies for engineering complex tissues. Nature Nanotechnology, 6(1), 13-22. doi:10.1038/nnano.2010.246 es_ES
dc.description.references Fears, K. P., Creager, S. E., & Latour, R. A. (2008). Determination of the Surface pKof Carboxylic- and Amine-Terminated Alkanethiols Using Surface Plasmon Resonance Spectroscopy. Langmuir, 24(3), 837-843. doi:10.1021/la701760s es_ES
dc.description.references FLEISCHMAJER, R., PERLISH, J. S., MACDONALD, D. E., SCHECHTER, A., MURDOCH, A. D., IOZZO, R. V., & YAMADA, Y. (1998). There Is Binding of Collagen IV to beta1 Integrin during Early Skin Basement Membrane Assembly. Annals of the New York Academy of Sciences, 857(1 MORPHOGENESIS), 212-227. doi:10.1111/j.1749-6632.1998.tb10118.x es_ES
dc.description.references Gelse, K. (2003). Collagens—structure, function, and biosynthesis. Advanced Drug Delivery Reviews, 55(12), 1531-1546. doi:10.1016/j.addr.2003.08.002 es_ES
dc.description.references Griffith, L. G. (2002). Tissue Engineering--Current Challenges and Expanding Opportunities. Science, 295(5557), 1009-1014. doi:10.1126/science.1069210 es_ES
dc.description.references Groth, T., Zlatanov, I., & Altankov, G. (1995). Adhesion of human peripheral lymphocytes on biomaterials preadsorbed with fibronectin and vitronectin. Journal of Biomaterials Science, Polymer Edition, 6(8), 729-739. doi:10.1163/156856295x00111 es_ES
dc.description.references Groth, T., & Altankov, G. (1996). Studies on cell-biomaterial interaction: role of tyrosine phosphorylation during fibroblast spreading on surfaces varying in wettability. Biomaterials, 17(12), 1227-1234. doi:10.1016/0142-9612(96)84943-x es_ES
dc.description.references Guan, J.-L. (1997). Focal adhesion kinase in integrin signaling. Matrix Biology, 16(4), 195-200. doi:10.1016/s0945-053x(97)90008-1 es_ES
dc.description.references Gurdak, E., Rouxhet, P. G., & Dupont-Gillain, C. C. (2006). Factors and mechanisms determining the formation of fibrillar collagen structures in adsorbed phases. Colloids and Surfaces B: Biointerfaces, 52(1), 76-88. doi:10.1016/j.colsurfb.2006.07.011 es_ES
dc.description.references Gustavsson, J., Altankov, G., Errachid, A., Samitier, J., Planell, J. A., & Engel, E. (2008). Surface modifications of silicon nitride for cellular biosensor applications. Journal of Materials Science: Materials in Medicine, 19(4), 1839-1850. doi:10.1007/s10856-008-3384-7 es_ES
dc.description.references Rodríguez Hernández, J. C., Rico, P., Moratal, D., Monleón Pradas, M., & Salmerón-Sánchez, M. (2009). Fibrinogen Patterns and Activity on Substrates with Tailored Hydroxy Density. Macromolecular Bioscience, 9(8), 766-775. doi:10.1002/mabi.200800332 es_ES
dc.description.references Hynes, R. O. (2002). Integrins. Cell, 110(6), 673-687. doi:10.1016/s0092-8674(02)00971-6 es_ES
dc.description.references Kalluri, R. (2003). Basement membranes: structure, assembly and role in tumour angiogenesis. Nature Reviews Cancer, 3(6), 422-433. doi:10.1038/nrc1094 es_ES
dc.description.references Käpylä, J., Ivaska, J., Riikonen, R., Nykvist, P., Pentikäinen, O., Johnson, M., & Heino, J. (2000). Integrin α2I Domain Recognizes Type I and Type IV Collagens by Different Mechanisms. Journal of Biological Chemistry, 275(5), 3348-3354. doi:10.1074/jbc.275.5.3348 es_ES
dc.description.references Keresztes, Z., Rouxhet, P. G., Remacle, C., & Dupont-Gillain, C. (2005). Supramolecular assemblies of adsorbed collagen affect the adhesion of endothelial cells. Journal of Biomedical Materials Research Part A, 76A(2), 223-233. doi:10.1002/jbm.a.30472 es_ES
dc.description.references KERN, A., EBLE, J., GOLBIK, R., & KUHN, K. (1993). Interaction of type IV collagen with the isolated integrins alpha1beta1 and alpha2beta1. European Journal of Biochemistry, 215(1), 151-159. doi:10.1111/j.1432-1033.1993.tb18017.x es_ES
dc.description.references Keselowsky, B. G., Collard, D. M., & Garcia, A. J. (2005). Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proceedings of the National Academy of Sciences, 102(17), 5953-5957. doi:10.1073/pnas.0407356102 es_ES
dc.description.references Khoshnoodi, J., Pedchenko, V., & Hudson, B. G. (2008). Mammalian collagen IV. Microscopy Research and Technique, 71(5), 357-370. doi:10.1002/jemt.20564 es_ES
dc.description.references Kruegel, J., & Miosge, N. (2010). Basement membrane components are key players in specialized extracellular matrices. Cellular and Molecular Life Sciences, 67(17), 2879-2895. doi:10.1007/s00018-010-0367-x es_ES
dc.description.references Kühn, K. (1995). Basement membrane (type IV) collagen. Matrix Biology, 14(6), 439-445. doi:10.1016/0945-053x(95)90001-2 es_ES
dc.description.references LeBleu, V. S., MacDonald, B., & Kalluri, R. (2007). Structure and Function of Basement Membranes. Experimental Biology and Medicine, 232(9), 1121-1129. doi:10.3181/0703-mr-72 es_ES
dc.description.references Lee, M. H., Ducheyne, P., Lynch, L., Boettiger, D., & Composto, R. J. (2006). Effect of biomaterial surface properties on fibronectin–α5β1 integrin interaction and cellular attachment. Biomaterials, 27(9), 1907-1916. doi:10.1016/j.biomaterials.2005.11.003 es_ES
dc.description.references Li, Y., Asadi, A., Monroe, M. R., & Douglas, E. P. (2009). pH effects on collagen fibrillogenesis in vitro: Electrostatic interactions and phosphate binding. Materials Science and Engineering: C, 29(5), 1643-1649. doi:10.1016/j.msec.2009.01.001 es_ES
dc.description.references Ludwig, N. S., Yoder, C., McConney, M., Vargo, T. G., & Kader, K. N. (2006). Directed type IV collagen self-assembly on hydroxylated PTFE. Journal of Biomedical Materials Research Part A, 78A(3), 615-619. doi:10.1002/jbm.a.30776 es_ES
dc.description.references Michael, K. E., Dumbauld, D. W., Burns, K. L., Hanks, S. K., & García, A. J. (2009). Focal Adhesion Kinase Modulates Cell Adhesion Strengthening via Integrin Activation. Molecular Biology of the Cell, 20(9), 2508-2519. doi:10.1091/mbc.e08-01-0076 es_ES
dc.description.references Mrksich, M. (2009). Using self-assembled monolayers to model the extracellular matrix. Acta Biomaterialia, 5(3), 832-841. doi:10.1016/j.actbio.2009.01.016 es_ES
dc.description.references Popova, S. N., Lundgren-Åkerlund, E., Wiig, H., & Gullberg, D. (2007). Physiology and pathology of collagen receptors. Acta Physiologica, 190(3), 179-187. doi:10.1111/j.1748-1716.2007.01718.x es_ES
dc.description.references Rivron, N., Liu, J., Rouwkema, J., de Boer, J., & van Blitterswijk, C. (2008). Engineering vascularised tissues in vitro. European Cells and Materials, 15, 27-40. doi:10.22203/ecm.v015a03 es_ES
dc.description.references Salchert, K., Streller, U., Pompe, T., Herold, N., Grimmer, M., & Werner, C. (2004). In Vitro Reconstitution of Fibrillar Collagen Type I Assemblies at Reactive Polymer Surfaces. Biomacromolecules, 5(4), 1340-1350. doi:10.1021/bm0499031 es_ES
dc.description.references SEPHEL, G., KENNEDY, R., & KUDRAVI, S. (1996). Expression of capillary basement membrane components during sequential phases of wound angiogenesis. Matrix Biology, 15(4), 263-279. doi:10.1016/s0945-053x(96)90117-1 es_ES
dc.description.references Shamhart, P. E., & Meszaros, J. G. (2010). Non-fibrillar collagens: Key mediators of post-infarction cardiac remodeling? Journal of Molecular and Cellular Cardiology, 48(3), 530-537. doi:10.1016/j.yjmcc.2009.06.017 es_ES
dc.description.references Sherratt, M. J., Bax, D. V., Chaudhry, S. S., Hodson, N., Lu, J. R., Saravanapavan, P., & Kielty, C. M. (2005). Substrate chemistry influences the morphology and biological function of adsorbed extracellular matrix assemblies. Biomaterials, 26(34), 7192-7206. doi:10.1016/j.biomaterials.2005.05.010 es_ES
dc.description.references SIPE, J. D. (2002). Tissue Engineering and Reparative Medicine. Annals of the New York Academy of Sciences, 961(1), 1-9. doi:10.1111/j.1749-6632.2002.tb03040.x es_ES
dc.description.references Sung, K. E., Su, G., Pehlke, C., Trier, S. M., Eliceiri, K. W., Keely, P. J., … Beebe, D. J. (2009). Control of 3-dimensional collagen matrix polymerization for reproducible human mammary fibroblast cell culture in microfluidic devices. Biomaterials, 30(27), 4833-4841. doi:10.1016/j.biomaterials.2009.05.043 es_ES
dc.description.references Tang, L., Thevenot, P., & Hu, W. (2008). Surface Chemistry Influences Implant Biocompatibility. Current Topics in Medicinal Chemistry, 8(4), 270-280. doi:10.2174/156802608783790901 es_ES
dc.description.references TIMPL, R., OBERBÄUMER, I., MARK, H., BODE, W., WICK, G., WEBER, S., & ENGEL, J. (1985). Structure and Biology of the Globular Domain of Basement Membrane Type IV Collagen. Annals of the New York Academy of Sciences, 460(1 Biology, Chem), 58-72. doi:10.1111/j.1749-6632.1985.tb51157.x es_ES
dc.description.references Toromanov, G., González-García, C., Altankov, G., & Salmerón-Sánchez, M. (2010). Vitronectin activity on polymer substrates with controlled –OH density. Polymer, 51(11), 2329-2336. doi:10.1016/j.polymer.2010.03.041 es_ES
dc.description.references Vandenberg, P., Kern, A., Ries, A., Luckenbill-Edds, L., Mann, K., & Kühn, K. (1991). Characterization of a type IV collagen major cell binding site with affinity to the alpha 1 beta 1 and the alpha 2 beta 1 integrins. The Journal of Cell Biology, 113(6), 1475-1483. doi:10.1083/jcb.113.6.1475 es_ES
dc.description.references Werner, C. (Ed.). (2006). Polymers for Regenerative Medicine. Advances in Polymer Science. doi:10.1007/11604228 es_ES
dc.description.references Westhoff, M. A., Serrels, B., Fincham, V. J., Frame, M. C., & Carragher, N. O. (2004). Src-Mediated Phosphorylation of Focal Adhesion Kinase Couples Actin and Adhesion Dynamics to Survival Signaling. Molecular and Cellular Biology, 24(18), 8113-8133. doi:10.1128/mcb.24.18.8113-8133.2004 es_ES
dc.description.references White, D. J., Puranen, S., Johnson, M. S., & Heino, J. (2004). The collagen receptor subfamily of the integrins. The International Journal of Biochemistry & Cell Biology, 36(8), 1405-1410. doi:10.1016/j.biocel.2003.08.016 es_ES
dc.description.references Xu, L.-C., & Siedlecki, C. A. (2007). Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials, 28(22), 3273-3283. doi:10.1016/j.biomaterials.2007.03.032 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem