Mostrar el registro sencillo del ítem
dc.contributor.author | Sastre, Jorge | es_ES |
dc.contributor.author | Ibáñez González, Jacinto Javier | es_ES |
dc.contributor.author | Defez Candel, Emilio | es_ES |
dc.contributor.author | Ruiz Martínez, Pedro Antonio | es_ES |
dc.date.accessioned | 2014-01-16T08:11:29Z | |
dc.date.issued | 2011-03-15 | |
dc.identifier.issn | 0096-3003 | |
dc.identifier.uri | http://hdl.handle.net/10251/34930 | |
dc.description.abstract | The matrix exponential plays a fundamental role in the solution of differential systems which appear in different science fields. This paper presents an efficient method for computing matrix exponentials based on Hermite matrix polynomial expansions. Hermite series truncation together with scaling and squaring and the application of floating point arithmetic bounds to the intermediate results provide excellent accuracy results compared with the best acknowledged computational methods. A backward-error analysis of the approximation in exact arithmetic is given. This analysis is used to provide a theoretical estimate for the optimal scaling of matrices. Two algorithms based on this method have been implemented as MATLAB functions. They have been compared with MATLAB functions funm and expm obtaining greater accuracy in the majority of tests. A careful cost comparison analysis with expm is provided showing that the proposed algorithms have lower maximum cost for some matrix norm intervals. Numerical tests show that the application of floating point arithmetic bounds to the intermediate results may reduce considerably computational costs, reaching in numerical tests relative higher average costs than expm of only 4.43% for the final Hermite selected order, and obtaining better accuracy results in the 77.36% of the test matrices. The MATLAB implementation of the best Hermite matrix polynomial based algorithm has been made available online. © 2011 Elsevier Inc. All rights reserved. | es_ES |
dc.description.sponsorship | This work has been supported by the Programa de Apoyo a la Investigacion y el Desarrollo of the Universidad Politecnica de Valencia PAID-05-09-4338, 2009. | en_EN |
dc.format.extent | 13 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Applied Mathematics and Computation | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Differential equations | es_ES |
dc.subject | Error analysis | es_ES |
dc.subject | Hermite matrix polynomial approximation | es_ES |
dc.subject | Matrix exponential | es_ES |
dc.subject | Matrix polynomial evaluation | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Efficient orthogonal matrix polynomial based method for computing matrix exponential | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1016/j.amc.2011.01.004 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-05-09-4338/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.description.bibliographicCitation | Sastre, J.; Ibáñez González, JJ.; Defez Candel, E.; Ruiz Martínez, PA. (2011). Efficient orthogonal matrix polynomial based method for computing matrix exponential. Applied Mathematics and Computation. 217(14):6451-6463. https://doi.org/10.1016/j.amc.2011.01.004 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.amc.2011.01.004 | es_ES |
dc.description.upvformatpinicio | 6451 | es_ES |
dc.description.upvformatpfin | 6463 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 217 | es_ES |
dc.description.issue | 14 | es_ES |
dc.relation.senia | 41378 | |
dc.contributor.funder | Universitat Politècnica de València | es_ES |