- -

Mixtures of independent component analyzers for EEG prediction

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mixtures of independent component analyzers for EEG prediction

Mostrar el registro completo del ítem

Safont Armero, G.; Salazar Afanador, A.; Vergara Domínguez, L.; Gonzalez, A.; Vidal Maciá, AM. (2012). Mixtures of independent component analyzers for EEG prediction. En Green and smart technology with sensor applications. Springer Verlag (Germany). 338:328-335. https://doi.org/10.1007/978-3-642-35251-5_46

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/35381

Ficheros en el ítem

Metadatos del ítem

Título: Mixtures of independent component analyzers for EEG prediction
Autor: Safont Armero, Gonzalo Salazar Afanador, Addisson Vergara Domínguez, Luís Gonzalez, Alberto Vidal Maciá, Antonio Manuel
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Fecha difusión:
Resumen:
This paper presents a new application of independent component analysis mixture modeling (ICAMM) for prediction of electroencephalographic (EEG) signals. Demonstrations in prediction of missing EEG data in a working memory ...[+]
Palabras clave: Electroencefalogramas , ICA , Predicción , Tareas de memoria , EEG , Prediction , Working-memory task
Derechos de uso: Reserva de todos los derechos
ISBN: 978-3-642-35250-8
Fuente:
Green and smart technology with sensor applications. (issn: 1865-0929 )
DOI: 10.1007/978-3-642-35251-5_46
Editorial:
Springer Verlag (Germany)
Versión del editor: http://link.springer.com/chapter/10.1007%2F978-3-642-35251-5_46
Título del congreso: International Conferences, GST and SIA 2012
Lugar del congreso: Jeju Island, Korea
Fecha congreso: November 28-December 2, 2012
Serie: Communications in Computer and Information Science;338
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F040/
info:eu-repo/grantAgreement/GVA//ISIC%2F2012%2F006/
Agradecimientos:
This work has been supported by Generalitat Valenciana under grants PROMETEO/2010/040 and ISIC/2012/006
Tipo: Capítulo de libro

References

Common, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press, USA (2010)

Salazar, A., Vergara, L., Serrano, A., Igual, J.: A general procedure for learning mixtures of independent component analyzers. Pattern Recognition 43(1), 69–85 (2010)

Lee, T.W., Lewicki, M.S., Sejnowski, T.J.: ICA mixture models for unsupervised classification of non-gaussian classes and automatic context switching in blind signal separation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1078–1089 (2000) [+]
Common, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press, USA (2010)

Salazar, A., Vergara, L., Serrano, A., Igual, J.: A general procedure for learning mixtures of independent component analyzers. Pattern Recognition 43(1), 69–85 (2010)

Lee, T.W., Lewicki, M.S., Sejnowski, T.J.: ICA mixture models for unsupervised classification of non-gaussian classes and automatic context switching in blind signal separation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1078–1089 (2000)

Salazar, A., Vergara, L.: ICA mixtures applied to ultrasonic nondestructive classification of archaeological ceramics. Eurasip Journal on Advances in Signal Processing 2010, article ID 125201, 11 pages (2010), doi:10.1155/2010/125201

Klein, C., Feige, B.: An independent component analysis (ICA) approach to the study of developmental differences in the saccadic contingent negative variation. Biological Psychology 70, 105–114 (2005)

Makeig, S., Westerfield, M., Jung, T.P., Covington, J., Townsend, J., Sejnowski, T.J., Courchesne, E.: Functionally Independent Components of the Late Positive Event-Related Potential during Visual Spatial Attention. Journal of Neuroscience 19(7), 2665–2680 (1999)

Wibral, M., Turi, G., Linden, D.E.J., Kaiser, J., Bledowski, C.: Decomposition of working memory-related scalp ERPs: Crossvalidation of fMRI-constrained source analysis and ICA. Internt J. of Psychol. 67, 200–211 (2008)

Castellanos, N.P., Makarov, V.A.: Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis. Journal of Neuroscience Methods 158, 300–312 (2006)

Salazar, A., Vergara, L., Miralles, R.: On including sequential dependence in ICA mixture models. Signal Processing 90, 2314–2318 (2010)

Dayan, P., Abbot, L.F.: Theoretical neuroscience: computational and mathematical modeling of neural systems. The MIT Press (2001)

Sternberg, S.: High-speed scanning in human memory. Science 153(3736), 652–654 (1966)

Raghavachari, S., Lisman, J.E., Tully, M., Madsen, J.R., Bromfield, E.B., Kahana, M.J.: Theta oscillations in human cortex during a working-memory task: evidence for local generators. J. of Neurophys. 95, 1630–1638 (2006)

Gorriz, J.M., Puntonet, C.G., Salmeron, G., Lang, E.W.: Time series prediction using ICA algorithms. In: Proc. of 2nd IEEE Internat. W. on Intellig Data Acquisition and Advanc. Comp. Systems: Tech. and App., pp. 226–230 (2003)

Lin, C.-T., Cheng, W.-C., Liang, S.-F.: An On-line ICA-Mixture-Model-Based Self-Constructing Fuzzy Neural Network. IEEE Transactions on Circuits and Systems I: Regular Papers 52(1), 207–221 (2005)

Lee, T.W., Girolami, M., Sejnowski, T.J.: Independent component analysis using an extended InfoMax algorithm for mixed sub-gaussian and super-gaussian sources. Neural Computation 11(2), 417–441 (1999)

Perrin, F., Pernier, J., Bertrand, D., Echallier, J.F.: Spherical splines for scalp potential and current density matching. Electroencep. and Clin. Neurophys. 72, 184–187 (1989)

Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem