Mostrar el registro sencillo del ítem
dc.contributor.author | Safont Armero, Gonzalo | es_ES |
dc.contributor.author | Salazar Afanador, Addisson | es_ES |
dc.contributor.author | Vergara Domínguez, Luís | es_ES |
dc.contributor.author | Gonzalez, Alberto | es_ES |
dc.contributor.author | Vidal Maciá, Antonio Manuel | es_ES |
dc.date.accessioned | 2014-02-06T08:12:15Z | |
dc.date.issued | 2012 | |
dc.identifier.isbn | 978-3-642-35250-8 | |
dc.identifier.issn | 1865-0929 | |
dc.identifier.uri | http://hdl.handle.net/10251/35381 | |
dc.description.abstract | This paper presents a new application of independent component analysis mixture modeling (ICAMM) for prediction of electroencephalographic (EEG) signals. Demonstrations in prediction of missing EEG data in a working memory task using classic methods and an ICAMM-based algorithm are included. The performance of the methods is measured by using four error indicators: signal-to-interference (SIR) ratio, Kullback-Leibler divergence, correlation at lag zero and mean structural similarity index. The results show that the ICAMM-based algorithm outperforms the classical spherical splines method which is commonly used in EEG signal processing. Hence, the potential of using mixtures of independent component analyzers (ICAs) to improve prediction, as opposed on estimating only one ICA is demonstrated. | es_ES |
dc.description.sponsorship | This work has been supported by Generalitat Valenciana under grants PROMETEO/2010/040 and ISIC/2012/006 | |
dc.format.extent | 8 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Green and smart technology with sensor applications | es_ES |
dc.relation.ispartofseries | Communications in Computer and Information Science;338 | |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Electroencefalogramas | es_ES |
dc.subject | ICA | es_ES |
dc.subject | Predicción | es_ES |
dc.subject | Tareas de memoria | es_ES |
dc.subject | EEG | es_ES |
dc.subject | Prediction | es_ES |
dc.subject | Working-memory task | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Mixtures of independent component analyzers for EEG prediction | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1007/978-3-642-35251-5_46 | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F040/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ISIC%2F2012%2F006/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.description.bibliographicCitation | Safont Armero, G.; Salazar Afanador, A.; Vergara Domínguez, L.; Gonzalez, A.; Vidal Maciá, AM. (2012). Mixtures of independent component analyzers for EEG prediction. En Green and smart technology with sensor applications. Springer Verlag (Germany). 338:328-335. https://doi.org/10.1007/978-3-642-35251-5_46 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | International Conferences, GST and SIA 2012 | es_ES |
dc.relation.conferencedate | November 28-December 2, 2012 | es_ES |
dc.relation.conferenceplace | Jeju Island, Korea | es_ES |
dc.relation.publisherversion | http://link.springer.com/chapter/10.1007%2F978-3-642-35251-5_46 | es_ES |
dc.description.upvformatpinicio | 328 | es_ES |
dc.description.upvformatpfin | 335 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 338 | es_ES |
dc.relation.senia | 234571 | |
dc.contributor.funder | Generalitat Valenciana | |
dc.description.references | Common, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press, USA (2010) | es_ES |
dc.description.references | Salazar, A., Vergara, L., Serrano, A., Igual, J.: A general procedure for learning mixtures of independent component analyzers. Pattern Recognition 43(1), 69–85 (2010) | es_ES |
dc.description.references | Lee, T.W., Lewicki, M.S., Sejnowski, T.J.: ICA mixture models for unsupervised classification of non-gaussian classes and automatic context switching in blind signal separation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1078–1089 (2000) | es_ES |
dc.description.references | Salazar, A., Vergara, L.: ICA mixtures applied to ultrasonic nondestructive classification of archaeological ceramics. Eurasip Journal on Advances in Signal Processing 2010, article ID 125201, 11 pages (2010), doi:10.1155/2010/125201 | es_ES |
dc.description.references | Klein, C., Feige, B.: An independent component analysis (ICA) approach to the study of developmental differences in the saccadic contingent negative variation. Biological Psychology 70, 105–114 (2005) | es_ES |
dc.description.references | Makeig, S., Westerfield, M., Jung, T.P., Covington, J., Townsend, J., Sejnowski, T.J., Courchesne, E.: Functionally Independent Components of the Late Positive Event-Related Potential during Visual Spatial Attention. Journal of Neuroscience 19(7), 2665–2680 (1999) | es_ES |
dc.description.references | Wibral, M., Turi, G., Linden, D.E.J., Kaiser, J., Bledowski, C.: Decomposition of working memory-related scalp ERPs: Crossvalidation of fMRI-constrained source analysis and ICA. Internt J. of Psychol. 67, 200–211 (2008) | es_ES |
dc.description.references | Castellanos, N.P., Makarov, V.A.: Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis. Journal of Neuroscience Methods 158, 300–312 (2006) | es_ES |
dc.description.references | Salazar, A., Vergara, L., Miralles, R.: On including sequential dependence in ICA mixture models. Signal Processing 90, 2314–2318 (2010) | es_ES |
dc.description.references | Dayan, P., Abbot, L.F.: Theoretical neuroscience: computational and mathematical modeling of neural systems. The MIT Press (2001) | es_ES |
dc.description.references | Sternberg, S.: High-speed scanning in human memory. Science 153(3736), 652–654 (1966) | es_ES |
dc.description.references | Raghavachari, S., Lisman, J.E., Tully, M., Madsen, J.R., Bromfield, E.B., Kahana, M.J.: Theta oscillations in human cortex during a working-memory task: evidence for local generators. J. of Neurophys. 95, 1630–1638 (2006) | es_ES |
dc.description.references | Gorriz, J.M., Puntonet, C.G., Salmeron, G., Lang, E.W.: Time series prediction using ICA algorithms. In: Proc. of 2nd IEEE Internat. W. on Intellig Data Acquisition and Advanc. Comp. Systems: Tech. and App., pp. 226–230 (2003) | es_ES |
dc.description.references | Lin, C.-T., Cheng, W.-C., Liang, S.-F.: An On-line ICA-Mixture-Model-Based Self-Constructing Fuzzy Neural Network. IEEE Transactions on Circuits and Systems I: Regular Papers 52(1), 207–221 (2005) | es_ES |
dc.description.references | Lee, T.W., Girolami, M., Sejnowski, T.J.: Independent component analysis using an extended InfoMax algorithm for mixed sub-gaussian and super-gaussian sources. Neural Computation 11(2), 417–441 (1999) | es_ES |
dc.description.references | Perrin, F., Pernier, J., Bertrand, D., Echallier, J.F.: Spherical splines for scalp potential and current density matching. Electroencep. and Clin. Neurophys. 72, 184–187 (1989) | es_ES |
dc.description.references | Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004) | es_ES |