Mostrar el registro sencillo del ítem
dc.contributor.author | Bertomeu Perelló, David | es_ES |
dc.contributor.author | García Sanoguera, David | es_ES |
dc.contributor.author | Fenollar Gimeno, Octavio Ángel | es_ES |
dc.contributor.author | Boronat Vitoria, Teodomiro | es_ES |
dc.contributor.author | Balart Gimeno, Rafael Antonio | es_ES |
dc.date.accessioned | 2014-02-19T12:57:13Z | |
dc.date.issued | 2012-05 | |
dc.identifier.issn | 0272-8397 | |
dc.identifier.uri | http://hdl.handle.net/10251/35775 | |
dc.description.abstract | [EN] In the last years, some high renewable content epoxy resins, derived from vegetable oils, have been developed at industrial level and are now commercially available; these can compete with petroleum-based resins as thermoset matrices for composite materials. Nevertheless, due to the relatively high cost in comparison to petroleum-based resins, their use is still restricted to applications with relatively low volume consumption such as model making, tuning components, nautical parts, special effects, outdoor sculptures, etc. in which, the use of composite laminates with carbon, aramid and, mainly, glass fibers is generalized by using hand layup and vacuum assisted resin transfer molding (VARTM) techniques due to low manufacturing costs and easy implementation. In this work, we study the behavior of two high renewable content epoxy resins derived from vegetable oils as potential substitutes of petroleum-based epoxies in composite laminates with flax reinforcements by using the VARTM technique. The curing behavior of the different epoxy resins is compared in terms of the gel point and exothermicity profile by differential scanning calorimetry (DSC). In addition, overall performance of flax-epoxy composites is compared with standardized mechanical (tensile, flexural and impact) and thermal (Vicat softening temperature, heat deflection temperature, thermo-mechanical analysis) tests. The curing DSC profiles of the two eco-friendly epoxy resins are similar to a conventional epoxy resin. They can be easily handled and processed by conventional VARTM process thus leading to composite laminates with flax with balanced mechanical and thermal properties, similar or even higher to a multipurpose epoxy resin. © 2012 Society of Plastics Engineers. | es_ES |
dc.description.sponsorship | This work is part of the project IPT-310000-2010-037, "ECOTEXCOMP: Research and development of textile structures useful as reinforcement of composite materials with marked ecological character" funded by the "Ministerio de Ciencia e Innovacion", with an aid of 189540.20 euros, within the "Plan Nacional de Investigacion Cientifica, Desarrollo e InnovacionTecnologica 2008-2011" and funded by the European Union through FEDER funds, Technology Fund 2007-2013, Operational Programme on R+D+i for and on behalf of the companies." | |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-Blackwell | es_ES |
dc.relation.ispartof | Polymer Composites | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Composite laminate | es_ES |
dc.subject | Curing behavior | es_ES |
dc.subject | Differential scanning calorimetries (DSC) | es_ES |
dc.subject | Eco-friendly | es_ES |
dc.subject | Exothermicity | es_ES |
dc.subject | Gel point | es_ES |
dc.subject | Hand lay-up | es_ES |
dc.subject | Heat deflection temperature | es_ES |
dc.subject | High costs | es_ES |
dc.subject | Manufacturing cost | es_ES |
dc.subject | Mechanical and thermal properties | es_ES |
dc.subject | Model-making | es_ES |
dc.subject | Renewable resource | es_ES |
dc.subject | Thermo-mechanical analysis | es_ES |
dc.subject | Vacuum assisted resin transfer molding | es_ES |
dc.subject | Vicat softening temperature | es_ES |
dc.subject | Curing | es_ES |
dc.subject | Differential scanning calorimetry | es_ES |
dc.subject | Environmental protection | es_ES |
dc.subject | Flax | es_ES |
dc.subject | Glass fibers | es_ES |
dc.subject | Laminates | es_ES |
dc.subject | Linen | es_ES |
dc.subject | Mechanical properties | es_ES |
dc.subject | Reinforcement | es_ES |
dc.subject | Resins | es_ES |
dc.subject | Thermosets | es_ES |
dc.subject | Vegetable oils | es_ES |
dc.subject | Yarn | es_ES |
dc.subject | Epoxy resins | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.subject.classification | INGENIERIA DE LOS PROCESOS DE FABRICACION | es_ES |
dc.title | Use of eco-friendly epoxy resins from renewable resources as potential substitutes of petrochemical epoxy resins for ambient cured composites with flax reinforcements | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/pc.22192 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//IPT-310000-2010-037/ES/ECOTEXCOMP: Investigación y desarrollo de estructuras textiles aplicables como refuerzo de materiales compuestos de marcado carácter ecológico./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.description.bibliographicCitation | Bertomeu Perelló, D.; García Sanoguera, D.; Fenollar Gimeno, OÁ.; Boronat Vitoria, T.; Balart Gimeno, RA. (2012). Use of eco-friendly epoxy resins from renewable resources as potential substitutes of petrochemical epoxy resins for ambient cured composites with flax reinforcements. Polymer Composites. 33(5):683-692. https://doi.org/10.1002/pc.22192 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://onlinelibrary.wiley.com/doi/10.1002/pc.22192/pdf | es_ES |
dc.description.upvformatpinicio | 683 | es_ES |
dc.description.upvformatpfin | 692 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 33 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 222257 | |
dc.identifier.eissn | 1548-0569 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.description.references | Alves, C., Ferrão, P. M. C., Silva, A. J., Reis, L. G., Freitas, M., Rodrigues, L. B., & Alves, D. E. (2010). Ecodesign of automotive components making use of natural jute fiber composites. Journal of Cleaner Production, 18(4), 313-327. doi:10.1016/j.jclepro.2009.10.022 | es_ES |
dc.description.references | JOHN, M., & THOMAS, S. (2008). Biofibres and biocomposites. Carbohydrate Polymers, 71(3), 343-364. doi:10.1016/j.carbpol.2007.05.040 | es_ES |
dc.description.references | Mohanty, A. K., Misra, M., & Drzal, L. T. (2002). Journal of Polymers and the Environment, 10(1/2), 19-26. doi:10.1023/a:1021013921916 | es_ES |
dc.description.references | Pillin, I., Kervoelen, A., Bourmaud, A., Goimard, J., Montrelay, N., & Baley, C. (2011). Could oleaginous flax fibers be used as reinforcement for polymers? Industrial Crops and Products, 34(3), 1556-1563. doi:10.1016/j.indcrop.2011.05.016 | es_ES |
dc.description.references | Summerscales, J., Dissanayake, N. P. J., Virk, A. S., & Hall, W. (2010). A review of bast fibres and their composites. Part 1 – Fibres as reinforcements. Composites Part A: Applied Science and Manufacturing, 41(10), 1329-1335. doi:10.1016/j.compositesa.2010.06.001 | es_ES |
dc.description.references | Sreekumar, P. A., Saiah, R., Saiter, J. M., Leblanc, N., Joseph, K., Unnikrishnan, G., & Thomas, S. (2009). Dynamic mechanical properties of sisal fiber reinforced polyester composites fabricated by resin transfer molding. Polymer Composites, 30(6), 768-775. doi:10.1002/pc.20611 | es_ES |
dc.description.references | Mu, Q., Wei, C., & Feng, S. (2009). Studies on mechanical properties of sisal fiber/phenol formaldehyde resin in-situ composites. Polymer Composites, 30(2), 131-137. doi:10.1002/pc.20529 | es_ES |
dc.description.references | Sever, K., Sarikanat, M., Seki, Y., Erkan, G., Erdoğan, Ü. H., & Erden, S. (2012). Surface treatments of jute fabric: The influence of surface characteristics on jute fabrics and mechanical properties of jute/polyester composites. Industrial Crops and Products, 35(1), 22-30. doi:10.1016/j.indcrop.2011.05.020 | es_ES |
dc.description.references | Wood, B. M., Coles, S. R., Maggs, S., Meredith, J., & Kirwan, K. (2011). Use of lignin as a compatibiliser in hemp/epoxy composites. Composites Science and Technology, 71(16), 1804-1810. doi:10.1016/j.compscitech.2011.06.005 | es_ES |
dc.description.references | Eichhorn, S. J., Baillie, C. A., Zafeiropoulos, N., Mwaikambo, L. Y., Ansell, M. P., Dufresne, A., … Wild, P. M. (2001). Journal of Materials Science, 36(9), 2107-2131. doi:10.1023/a:1017512029696 | es_ES |
dc.description.references | Dissanayake, N. P. J., Summerscales, J., Grove, S. M., & Singh, M. M. (2009). Life Cycle Impact Assessment of Flax Fibre for the Reinforcement of Composites. Journal of Biobased Materials and Bioenergy, 3(3), 245-248. doi:10.1166/jbmb.2009.1029 | es_ES |
dc.description.references | Masudul Hassan, M., & Khan, M. A. (2008). Role of N-(β-amino ethyl) γ-aminopropyl trimethoxy silane as Coupling Agent on the Jute-polycarbonate Composites. Polymer-Plastics Technology and Engineering, 47(8), 847-850. doi:10.1080/03602550802188862 | es_ES |
dc.description.references | Zaman, H. U., Khan, M. A., & Khan, R. A. (2009). Improvement of Mechanical Properties of Jute Fibers-Polyethylene/Polypropylene Composites: Effect of Green Dye and UV Radiation. Polymer-Plastics Technology and Engineering, 48(11), 1130-1138. doi:10.1080/03602550903147262 | es_ES |
dc.description.references | Zou, Y., Xu, H., & Yang, Y. (2010). Lightweight Polypropylene Composites Reinforced by Long Switchgrass Stems. Journal of Polymers and the Environment, 18(4), 464-473. doi:10.1007/s10924-010-0165-4 | es_ES |
dc.description.references | De Arcaya, P. A., Retegi, A., Arbelaiz, A., Kenny, J. M., & Mondragon, I. (2009). Mechanical properties of natural fibers/polyamides composites. Polymer Composites, 30(3), 257-264. doi:10.1002/pc.20558 | es_ES |
dc.description.references | Twite-Kabamba, E., Mechraoui, A., & Rodrigue, D. (2009). Rheological properties of polypropylene/hemp fiber composites. Polymer Composites, 30(10), 1401-1407. doi:10.1002/pc.20704 | es_ES |
dc.description.references | De Rosa, I. M., Iannoni, A., Kenny, J. M., Puglia, D., Santulli, C., Sarasini, F., & Terenzi, A. (2011). Poly(lactic acid)/Phormium tenax composites: Morphology and thermo-mechanical behavior. Polymer Composites, 32(9), 1362-1368. doi:10.1002/pc.21159 | es_ES |
dc.description.references | Christian, S. J., & Billington, S. L. (2011). Mechanical response of PHB- and cellulose acetate natural fiber-reinforced composites for construction applications. Composites Part B: Engineering, 42(7), 1920-1928. doi:10.1016/j.compositesb.2011.05.039 | es_ES |
dc.description.references | Hodzic, A., Coakley, R., Curro, R., Berndt, C. C., & Shanks, R. A. (2007). Design and Optimization of Biopolyester Bagasse Fiber Composites. Journal of Biobased Materials and Bioenergy, 1(1), 46-55. doi:10.1166/jbmb.2007.005 | es_ES |
dc.description.references | Bax, B., & Müssig, J. (2008). Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Composites Science and Technology, 68(7-8), 1601-1607. doi:10.1016/j.compscitech.2008.01.004 | es_ES |
dc.description.references | Leite, M. C. A. M., Furtado, C. R. G., Couto, L. O., Oliveira, F. L. B. O., & Correia, T. R. (2010). Avaliação da biodegradação de compósitos de poli(ε-caprolactona)/fibra de coco verde. Polímeros, 20(5), 339-344. doi:10.1590/s0104-14282010005000063 | es_ES |
dc.description.references | Saiah, R., Sreekumar, P. A., Gopalakrishnan, P., Leblanc, N., Gattin, R., & Saiter, J. M. (2009). Fabrication and characterization of 100% green composite: Thermoplastic based on wheat flour reinforced by flax fibers. Polymer Composites, 30(11), 1595-1600. doi:10.1002/pc.20732 | es_ES |
dc.description.references | Campaner, P., D’Amico, D., Longo, L., Stifani, C., & Tarzia, A. (2009). Cardanol-based novolac resins as curing agents of epoxy resins. Journal of Applied Polymer Science, 114(6), 3585-3591. doi:10.1002/app.30979 | es_ES |
dc.description.references | Raju, & Kumar, P. (2011). Cathodic electrodeposition of self-curable polyepoxide resins based on cardanol. Journal of Coatings Technology and Research, 8(5), 563-575. doi:10.1007/s11998-011-9337-y | es_ES |
dc.description.references | Rao, B. S., & Palanisamy, A. (2011). Monofunctional benzoxazine from cardanol for bio-composite applications. Reactive and Functional Polymers, 71(2), 148-154. doi:10.1016/j.reactfunctpolym.2010.11.025 | es_ES |
dc.description.references | Chen, L., Zhou, S., Song, S., Zhang, B., & Gu, G. (2010). Preparation and anticorrosive performances of polysiloxane-modified epoxy coatings based on polyaminopropylmethylsiloxane-containing amine curing agent. Journal of Coatings Technology and Research, 8(4), 481-487. doi:10.1007/s11998-010-9311-0 | es_ES |
dc.description.references | Ghosh, K., Garcia, P., & Galgoci, E. (1999). Recent advances in epoxy curing agent technology for low temperature cure coatings. Anti-Corrosion Methods and Materials, 46(2), 100-110. doi:10.1108/00035599910263215 | es_ES |
dc.description.references | Seniha Güner, F., Yağcı, Y., & Tuncer Erciyes, A. (2006). Polymers from triglyceride oils. Progress in Polymer Science, 31(7), 633-670. doi:10.1016/j.progpolymsci.2006.07.001 | es_ES |
dc.description.references | Tsujimoto, T., Uyama, H., & Kobayashi, S. (2010). Synthesis of high-performance green nanocomposites from renewable natural oils. Polymer Degradation and Stability, 95(8), 1399-1405. doi:10.1016/j.polymdegradstab.2010.01.016 | es_ES |
dc.description.references | Gupta, A. P., Ahmad, S., & Dev, A. (2011). Modification of novel bio-based resin-epoxidized soybean oil by conventional epoxy resin. Polymer Engineering & Science, 51(6), 1087-1091. doi:10.1002/pen.21791 | es_ES |
dc.description.references | Manthey, N. W., Cardona, F., Aravinthan, T., & Cooney, T. (2011). Cure kinetics of an epoxidized hemp oil based bioresin system. Journal of Applied Polymer Science, 122(1), 444-451. doi:10.1002/app.34086 | es_ES |
dc.description.references | Mustata, F., Tudorachi, N., & Rosu, D. (2011). Curing and thermal behavior of resin matrix for composites based on epoxidized soybean oil/diglycidyl ether of bisphenol A. Composites Part B: Engineering, 42(7), 1803-1812. doi:10.1016/j.compositesb.2011.07.003 | es_ES |
dc.description.references | Takahashi, T., Hirayama, K., Teramoto, N., & Shibata, M. (2008). Biocomposites composed of epoxidized soybean oil cured with terpene-based acid anhydride and cellulose fibers. Journal of Applied Polymer Science, 108(3), 1596-1602. doi:10.1002/app.27866 | es_ES |
dc.description.references | Miyagawa, H., Misra, M., Drzal, L. T., & Mohanty, A. K. (2005). Fracture toughness and impact strength of anhydride-cured biobased epoxy. Polymer Engineering & Science, 45(4), 487-495. doi:10.1002/pen.20290 | es_ES |
dc.description.references | J. D. Espinoza Pérez, D. M. Haagenson, S. W. Pryor, C. A. Ulven, & D. P. Wiesenborn. (2009). Production and Characterization of Epoxidized Canola Oil. Transactions of the ASABE, 52(4), 1289-1297. doi:10.13031/2013.27772 | es_ES |
dc.description.references | Morye, S. S., & Wool, R. P. (2005). Mechanical properties of glass/flax hybrid composites based on a novel modified soybean oil matrix material. Polymer Composites, 26(4), 407-416. doi:10.1002/pc.20099 | es_ES |
dc.description.references | Thielemans, W., & Wool, R. P. (2005). Kraft lignin as fiber treatment for natural fiber-reinforced composites. Polymer Composites, 26(5), 695-705. doi:10.1002/pc.20141 | es_ES |
dc.description.references | Abdelkader, A. F., & White, J. R. (2005). Water absorption in epoxy resins: The effects of the crosslinking agent and curing temperature. Journal of Applied Polymer Science, 98(6), 2544-2549. doi:10.1002/app.22400 | es_ES |
dc.description.references | Astruc, A., Joliff, E., Chailan, J.-F., Aragon, E., Petter, C. O., & Sampaio, C. H. (2009). Incorporation of kaolin fillers into an epoxy/polyamidoamine matrix for coatings. Progress in Organic Coatings, 65(1), 158-168. doi:10.1016/j.porgcoat.2008.11.003 | es_ES |