- -

Use of eco-friendly epoxy resins from renewable resources as potential substitutes of petrochemical epoxy resins for ambient cured composites with flax reinforcements

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Use of eco-friendly epoxy resins from renewable resources as potential substitutes of petrochemical epoxy resins for ambient cured composites with flax reinforcements

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bertomeu Perelló, David es_ES
dc.contributor.author García Sanoguera, David es_ES
dc.contributor.author Fenollar Gimeno, Octavio Ángel es_ES
dc.contributor.author Boronat Vitoria, Teodomiro es_ES
dc.contributor.author Balart Gimeno, Rafael Antonio es_ES
dc.date.accessioned 2014-02-19T12:57:13Z
dc.date.issued 2012-05
dc.identifier.issn 0272-8397
dc.identifier.uri http://hdl.handle.net/10251/35775
dc.description.abstract [EN] In the last years, some high renewable content epoxy resins, derived from vegetable oils, have been developed at industrial level and are now commercially available; these can compete with petroleum-based resins as thermoset matrices for composite materials. Nevertheless, due to the relatively high cost in comparison to petroleum-based resins, their use is still restricted to applications with relatively low volume consumption such as model making, tuning components, nautical parts, special effects, outdoor sculptures, etc. in which, the use of composite laminates with carbon, aramid and, mainly, glass fibers is generalized by using hand layup and vacuum assisted resin transfer molding (VARTM) techniques due to low manufacturing costs and easy implementation. In this work, we study the behavior of two high renewable content epoxy resins derived from vegetable oils as potential substitutes of petroleum-based epoxies in composite laminates with flax reinforcements by using the VARTM technique. The curing behavior of the different epoxy resins is compared in terms of the gel point and exothermicity profile by differential scanning calorimetry (DSC). In addition, overall performance of flax-epoxy composites is compared with standardized mechanical (tensile, flexural and impact) and thermal (Vicat softening temperature, heat deflection temperature, thermo-mechanical analysis) tests. The curing DSC profiles of the two eco-friendly epoxy resins are similar to a conventional epoxy resin. They can be easily handled and processed by conventional VARTM process thus leading to composite laminates with flax with balanced mechanical and thermal properties, similar or even higher to a multipurpose epoxy resin. © 2012 Society of Plastics Engineers. es_ES
dc.description.sponsorship This work is part of the project IPT-310000-2010-037, "ECOTEXCOMP: Research and development of textile structures useful as reinforcement of composite materials with marked ecological character" funded by the "Ministerio de Ciencia e Innovacion", with an aid of 189540.20 euros, within the "Plan Nacional de Investigacion Cientifica, Desarrollo e InnovacionTecnologica 2008-2011" and funded by the European Union through FEDER funds, Technology Fund 2007-2013, Operational Programme on R+D+i for and on behalf of the companies."
dc.language Inglés es_ES
dc.publisher Wiley-Blackwell es_ES
dc.relation.ispartof Polymer Composites es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Composite laminate es_ES
dc.subject Curing behavior es_ES
dc.subject Differential scanning calorimetries (DSC) es_ES
dc.subject Eco-friendly es_ES
dc.subject Exothermicity es_ES
dc.subject Gel point es_ES
dc.subject Hand lay-up es_ES
dc.subject Heat deflection temperature es_ES
dc.subject High costs es_ES
dc.subject Manufacturing cost es_ES
dc.subject Mechanical and thermal properties es_ES
dc.subject Model-making es_ES
dc.subject Renewable resource es_ES
dc.subject Thermo-mechanical analysis es_ES
dc.subject Vacuum assisted resin transfer molding es_ES
dc.subject Vicat softening temperature es_ES
dc.subject Curing es_ES
dc.subject Differential scanning calorimetry es_ES
dc.subject Environmental protection es_ES
dc.subject Flax es_ES
dc.subject Glass fibers es_ES
dc.subject Laminates es_ES
dc.subject Linen es_ES
dc.subject Mechanical properties es_ES
dc.subject Reinforcement es_ES
dc.subject Resins es_ES
dc.subject Thermosets es_ES
dc.subject Vegetable oils es_ES
dc.subject Yarn es_ES
dc.subject Epoxy resins es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.title Use of eco-friendly epoxy resins from renewable resources as potential substitutes of petrochemical epoxy resins for ambient cured composites with flax reinforcements es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/pc.22192
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//IPT-310000-2010-037/ES/ECOTEXCOMP: Investigación y desarrollo de estructuras textiles aplicables como refuerzo de materiales compuestos de marcado carácter ecológico./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Bertomeu Perelló, D.; García Sanoguera, D.; Fenollar Gimeno, OÁ.; Boronat Vitoria, T.; Balart Gimeno, RA. (2012). Use of eco-friendly epoxy resins from renewable resources as potential substitutes of petrochemical epoxy resins for ambient cured composites with flax reinforcements. Polymer Composites. 33(5):683-692. https://doi.org/10.1002/pc.22192 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://onlinelibrary.wiley.com/doi/10.1002/pc.22192/pdf es_ES
dc.description.upvformatpinicio 683 es_ES
dc.description.upvformatpfin 692 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 33 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 222257
dc.identifier.eissn 1548-0569
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.description.references Alves, C., Ferrão, P. M. C., Silva, A. J., Reis, L. G., Freitas, M., Rodrigues, L. B., & Alves, D. E. (2010). Ecodesign of automotive components making use of natural jute fiber composites. Journal of Cleaner Production, 18(4), 313-327. doi:10.1016/j.jclepro.2009.10.022 es_ES
dc.description.references JOHN, M., & THOMAS, S. (2008). Biofibres and biocomposites. Carbohydrate Polymers, 71(3), 343-364. doi:10.1016/j.carbpol.2007.05.040 es_ES
dc.description.references Mohanty, A. K., Misra, M., & Drzal, L. T. (2002). Journal of Polymers and the Environment, 10(1/2), 19-26. doi:10.1023/a:1021013921916 es_ES
dc.description.references Pillin, I., Kervoelen, A., Bourmaud, A., Goimard, J., Montrelay, N., & Baley, C. (2011). Could oleaginous flax fibers be used as reinforcement for polymers? Industrial Crops and Products, 34(3), 1556-1563. doi:10.1016/j.indcrop.2011.05.016 es_ES
dc.description.references Summerscales, J., Dissanayake, N. P. J., Virk, A. S., & Hall, W. (2010). A review of bast fibres and their composites. Part 1 – Fibres as reinforcements. Composites Part A: Applied Science and Manufacturing, 41(10), 1329-1335. doi:10.1016/j.compositesa.2010.06.001 es_ES
dc.description.references Sreekumar, P. A., Saiah, R., Saiter, J. M., Leblanc, N., Joseph, K., Unnikrishnan, G., & Thomas, S. (2009). Dynamic mechanical properties of sisal fiber reinforced polyester composites fabricated by resin transfer molding. Polymer Composites, 30(6), 768-775. doi:10.1002/pc.20611 es_ES
dc.description.references Mu, Q., Wei, C., & Feng, S. (2009). Studies on mechanical properties of sisal fiber/phenol formaldehyde resin in-situ composites. Polymer Composites, 30(2), 131-137. doi:10.1002/pc.20529 es_ES
dc.description.references Sever, K., Sarikanat, M., Seki, Y., Erkan, G., Erdoğan, Ü. H., & Erden, S. (2012). Surface treatments of jute fabric: The influence of surface characteristics on jute fabrics and mechanical properties of jute/polyester composites. Industrial Crops and Products, 35(1), 22-30. doi:10.1016/j.indcrop.2011.05.020 es_ES
dc.description.references Wood, B. M., Coles, S. R., Maggs, S., Meredith, J., & Kirwan, K. (2011). Use of lignin as a compatibiliser in hemp/epoxy composites. Composites Science and Technology, 71(16), 1804-1810. doi:10.1016/j.compscitech.2011.06.005 es_ES
dc.description.references Eichhorn, S. J., Baillie, C. A., Zafeiropoulos, N., Mwaikambo, L. Y., Ansell, M. P., Dufresne, A., … Wild, P. M. (2001). Journal of Materials Science, 36(9), 2107-2131. doi:10.1023/a:1017512029696 es_ES
dc.description.references Dissanayake, N. P. J., Summerscales, J., Grove, S. M., & Singh, M. M. (2009). Life Cycle Impact Assessment of Flax Fibre for the Reinforcement of Composites. Journal of Biobased Materials and Bioenergy, 3(3), 245-248. doi:10.1166/jbmb.2009.1029 es_ES
dc.description.references Masudul Hassan, M., & Khan, M. A. (2008). Role of N-(β-amino ethyl) γ-aminopropyl trimethoxy silane as Coupling Agent on the Jute-polycarbonate Composites. Polymer-Plastics Technology and Engineering, 47(8), 847-850. doi:10.1080/03602550802188862 es_ES
dc.description.references Zaman, H. U., Khan, M. A., & Khan, R. A. (2009). Improvement of Mechanical Properties of Jute Fibers-Polyethylene/Polypropylene Composites: Effect of Green Dye and UV Radiation. Polymer-Plastics Technology and Engineering, 48(11), 1130-1138. doi:10.1080/03602550903147262 es_ES
dc.description.references Zou, Y., Xu, H., & Yang, Y. (2010). Lightweight Polypropylene Composites Reinforced by Long Switchgrass Stems. Journal of Polymers and the Environment, 18(4), 464-473. doi:10.1007/s10924-010-0165-4 es_ES
dc.description.references De Arcaya, P. A., Retegi, A., Arbelaiz, A., Kenny, J. M., & Mondragon, I. (2009). Mechanical properties of natural fibers/polyamides composites. Polymer Composites, 30(3), 257-264. doi:10.1002/pc.20558 es_ES
dc.description.references Twite-Kabamba, E., Mechraoui, A., & Rodrigue, D. (2009). Rheological properties of polypropylene/hemp fiber composites. Polymer Composites, 30(10), 1401-1407. doi:10.1002/pc.20704 es_ES
dc.description.references De Rosa, I. M., Iannoni, A., Kenny, J. M., Puglia, D., Santulli, C., Sarasini, F., & Terenzi, A. (2011). Poly(lactic acid)/Phormium tenax composites: Morphology and thermo-mechanical behavior. Polymer Composites, 32(9), 1362-1368. doi:10.1002/pc.21159 es_ES
dc.description.references Christian, S. J., & Billington, S. L. (2011). Mechanical response of PHB- and cellulose acetate natural fiber-reinforced composites for construction applications. Composites Part B: Engineering, 42(7), 1920-1928. doi:10.1016/j.compositesb.2011.05.039 es_ES
dc.description.references Hodzic, A., Coakley, R., Curro, R., Berndt, C. C., & Shanks, R. A. (2007). Design and Optimization of Biopolyester Bagasse Fiber Composites. Journal of Biobased Materials and Bioenergy, 1(1), 46-55. doi:10.1166/jbmb.2007.005 es_ES
dc.description.references Bax, B., & Müssig, J. (2008). Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Composites Science and Technology, 68(7-8), 1601-1607. doi:10.1016/j.compscitech.2008.01.004 es_ES
dc.description.references Leite, M. C. A. M., Furtado, C. R. G., Couto, L. O., Oliveira, F. L. B. O., & Correia, T. R. (2010). Avaliação da biodegradação de compósitos de poli(ε-caprolactona)/fibra de coco verde. Polímeros, 20(5), 339-344. doi:10.1590/s0104-14282010005000063 es_ES
dc.description.references Saiah, R., Sreekumar, P. A., Gopalakrishnan, P., Leblanc, N., Gattin, R., & Saiter, J. M. (2009). Fabrication and characterization of 100% green composite: Thermoplastic based on wheat flour reinforced by flax fibers. Polymer Composites, 30(11), 1595-1600. doi:10.1002/pc.20732 es_ES
dc.description.references Campaner, P., D’Amico, D., Longo, L., Stifani, C., & Tarzia, A. (2009). Cardanol-based novolac resins as curing agents of epoxy resins. Journal of Applied Polymer Science, 114(6), 3585-3591. doi:10.1002/app.30979 es_ES
dc.description.references Raju, & Kumar, P. (2011). Cathodic electrodeposition of self-curable polyepoxide resins based on cardanol. Journal of Coatings Technology and Research, 8(5), 563-575. doi:10.1007/s11998-011-9337-y es_ES
dc.description.references Rao, B. S., & Palanisamy, A. (2011). Monofunctional benzoxazine from cardanol for bio-composite applications. Reactive and Functional Polymers, 71(2), 148-154. doi:10.1016/j.reactfunctpolym.2010.11.025 es_ES
dc.description.references Chen, L., Zhou, S., Song, S., Zhang, B., & Gu, G. (2010). Preparation and anticorrosive performances of polysiloxane-modified epoxy coatings based on polyaminopropylmethylsiloxane-containing amine curing agent. Journal of Coatings Technology and Research, 8(4), 481-487. doi:10.1007/s11998-010-9311-0 es_ES
dc.description.references Ghosh, K., Garcia, P., & Galgoci, E. (1999). Recent advances in epoxy curing agent technology for low temperature cure coatings. Anti-Corrosion Methods and Materials, 46(2), 100-110. doi:10.1108/00035599910263215 es_ES
dc.description.references Seniha Güner, F., Yağcı, Y., & Tuncer Erciyes, A. (2006). Polymers from triglyceride oils. Progress in Polymer Science, 31(7), 633-670. doi:10.1016/j.progpolymsci.2006.07.001 es_ES
dc.description.references Tsujimoto, T., Uyama, H., & Kobayashi, S. (2010). Synthesis of high-performance green nanocomposites from renewable natural oils. Polymer Degradation and Stability, 95(8), 1399-1405. doi:10.1016/j.polymdegradstab.2010.01.016 es_ES
dc.description.references Gupta, A. P., Ahmad, S., & Dev, A. (2011). Modification of novel bio-based resin-epoxidized soybean oil by conventional epoxy resin. Polymer Engineering & Science, 51(6), 1087-1091. doi:10.1002/pen.21791 es_ES
dc.description.references Manthey, N. W., Cardona, F., Aravinthan, T., & Cooney, T. (2011). Cure kinetics of an epoxidized hemp oil based bioresin system. Journal of Applied Polymer Science, 122(1), 444-451. doi:10.1002/app.34086 es_ES
dc.description.references Mustata, F., Tudorachi, N., & Rosu, D. (2011). Curing and thermal behavior of resin matrix for composites based on epoxidized soybean oil/diglycidyl ether of bisphenol A. Composites Part B: Engineering, 42(7), 1803-1812. doi:10.1016/j.compositesb.2011.07.003 es_ES
dc.description.references Takahashi, T., Hirayama, K., Teramoto, N., & Shibata, M. (2008). Biocomposites composed of epoxidized soybean oil cured with terpene-based acid anhydride and cellulose fibers. Journal of Applied Polymer Science, 108(3), 1596-1602. doi:10.1002/app.27866 es_ES
dc.description.references Miyagawa, H., Misra, M., Drzal, L. T., & Mohanty, A. K. (2005). Fracture toughness and impact strength of anhydride-cured biobased epoxy. Polymer Engineering & Science, 45(4), 487-495. doi:10.1002/pen.20290 es_ES
dc.description.references J. D. Espinoza Pérez, D. M. Haagenson, S. W. Pryor, C. A. Ulven, & D. P. Wiesenborn. (2009). Production and Characterization of Epoxidized Canola Oil. Transactions of the ASABE, 52(4), 1289-1297. doi:10.13031/2013.27772 es_ES
dc.description.references Morye, S. S., & Wool, R. P. (2005). Mechanical properties of glass/flax hybrid composites based on a novel modified soybean oil matrix material. Polymer Composites, 26(4), 407-416. doi:10.1002/pc.20099 es_ES
dc.description.references Thielemans, W., & Wool, R. P. (2005). Kraft lignin as fiber treatment for natural fiber-reinforced composites. Polymer Composites, 26(5), 695-705. doi:10.1002/pc.20141 es_ES
dc.description.references Abdelkader, A. F., & White, J. R. (2005). Water absorption in epoxy resins: The effects of the crosslinking agent and curing temperature. Journal of Applied Polymer Science, 98(6), 2544-2549. doi:10.1002/app.22400 es_ES
dc.description.references Astruc, A., Joliff, E., Chailan, J.-F., Aragon, E., Petter, C. O., & Sampaio, C. H. (2009). Incorporation of kaolin fillers into an epoxy/polyamidoamine matrix for coatings. Progress in Organic Coatings, 65(1), 158-168. doi:10.1016/j.porgcoat.2008.11.003 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem