- -

A genetic algorithm for the design of job rotation schedules considering ergonomic and competence criteria

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A genetic algorithm for the design of job rotation schedules considering ergonomic and competence criteria

Show simple item record

Files in this item

dc.contributor.author Asensio Cuesta, Sabina es_ES
dc.contributor.author Diego Más, José Antonio es_ES
dc.contributor.author Canós Darós, Lourdes es_ES
dc.contributor.author Andrés Romano, Carlos es_ES
dc.date.accessioned 2014-02-20T16:53:20Z
dc.date.issued 2012-06
dc.identifier.issn 0268-3768
dc.identifier.uri http://hdl.handle.net/10251/35843
dc.description.abstract Job rotation is an organizational strategy increasingly used in manufacturing systems as it provides benefits to both workers and management in an organization. Job rotation prevents musculoskeletal disorders, eliminates boredom and increases job satisfaction and morale. As a result, the company gains a skilled and motivated workforce, which leads to increases in productivity, employee loyalty and decreases in employee turnover. A multi-criteria genetic algorithm is employed to generate job rotation schedules, with considering the most adequate employee-job assignments to prevent musculoskeletal disorders caused by accumulation of fatigue. The algorithm provides the best adequacy available between workers and the competences needed for performing the tasks. The design of the rotation schedules is based not only on ergonomic criteria but also on issues related to product quality and employee satisfaction. The model includes the workers' competences as a measure for the goodness of solutions. © 2011 Springer-Verlag. es_ES
dc.description.sponsorship We thank the Universidad Politecnica de Valencia for its support of this research through its Research and Development Program 2009 and financing through the project PAID-06-09/2902. The Universidad Politecnica de Valencia has funded the translation of this work. en_EN
dc.format.extent 14 es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation Universidad Politecnica de Valencia [PAID-06-09/2902] es_ES
dc.relation.ispartof International Journal of Advanced Manufacturing Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Competences es_ES
dc.subject Job rotation es_ES
dc.subject Musculoskeletal disorders es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.subject.classification PROYECTOS DE INGENIERIA es_ES
dc.title A genetic algorithm for the design of job rotation schedules considering ergonomic and competence criteria es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1007/s00170-011-3672-0
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Proyectos de Ingeniería - Departament de Projectes d'Enginyeria es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.contributor.affiliation Universitat Politècnica de València. Grupo de Investigación en Reingeniería, Organización, trabajo en Grupo y Logística Empresarial (ROGLE) es_ES
dc.description.bibliographicCitation Asensio Cuesta, S.; Diego Más, JA.; Canós Darós, L.; Andrés Romano, C. (2012). A genetic algorithm for the design of job rotation schedules considering ergonomic and competence criteria. International Journal of Advanced Manufacturing Technology. 60(9-12):1161-1174. doi:10.1007/s00170-011-3672-0 es_ES
dc.description.accrualMethod Senia es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s00170-011-3672-0 es_ES
dc.description.upvformatpinicio 1161 es_ES
dc.description.upvformatpfin 1174 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 60 es_ES
dc.description.issue 9-12 es_ES
dc.relation.senia 207826
dc.relation.references Podniece Z (2008) Work-related musculoskeletal disorders: prevention report. European Agency for Safety and Health at Work, Belgium es_ES
dc.relation.references Bernard B, Sauter S, Fine LJ, Petersen I, Hales T (1994) Job task and psychosocial risk factors for work-related musculoskeletal disorders among new paper employees. Scand J Work Environ Health 20:417–426 es_ES
dc.relation.references Emodi T, Zhang WJ, Lang SYT, Bi ZM (2007) A framework for modeling and analysis of human repetitive operations in a production assembly line. International SAE Digital Human Modeling for Design and Engineering Conference And Exhibition, University District Seattle, Washington, USA es_ES
dc.relation.references Huang HJ (1999) Job rotation from the employees’ point of view. Res Hum R M 7:75–85 es_ES
dc.relation.references Eriksson T, Ortega J (2006) The adoption of job rotation: testing the theories. Ind Labor Relat Rev 59:653–666 es_ES
dc.relation.references Azizi N, Zolfaghari S, Liang M (2010) Modeling job rotation in manufacturing systems: the study of employee’s boredom and skill variations. Int J Prod Econ 123:69–85 es_ES
dc.relation.references Cunningham BJ, Eberle T (1990) A guide to job enrichment and redesign. Personnel 67:56–61 es_ES
dc.relation.references Rissen D, Melin B, Sandsjö L, Dohns I, Lundberg U (2002) Psychophysiological stress reactions, trapezius muscle activity, and neck and shoulder pain among female cashiers before and after introduction of job rotation. Work Stress 16:127–137 es_ES
dc.relation.references Jonsson B (1988) Electromyographic studies of job rotation. Scand J Work Environ Health 14:108–109 es_ES
dc.relation.references Hazzard L, Mautz J, Wrightsman D (1992) Job rotation cuts cumulative trauma cases. Personnel 71:29–32 es_ES
dc.relation.references Papadimitriou CH, Steiglitz K (1982) Combinatorial optimization: algorithms and complexity. Dover, New York es_ES
dc.relation.references Carnahan BJ, Redfern MS, Norman B (2000) Designing safe job rotation schedules using optimization and heuristic search. Ergonomics 43:543–560 es_ES
dc.relation.references Tharmmaphornphilas W, Norman B (2004) A quantitative method for determining proper job rotation intervals. Ann Oper Res 128:251–266 es_ES
dc.relation.references Yaoyuenyong S, Nanthavanij S (2006) Hybrid procedure to determine optimal workforce without noise hazard exposure. Comput Ind Eng 51:743–764 es_ES
dc.relation.references Costa AM, Miralles C (2009) Job rotation in assembly lines employing disabled workers. Int J Prod Econ 120:625–632 es_ES
dc.relation.references Aryanezhad MB, Kheirkhah V, Deljoo V, Mirzapour Al-e-hashem SMJ (2009) Designing safe job rotation schedules based upon workers skills. Int J Adv Manuf Technol 41:193–199 es_ES
dc.relation.references Tharmmaphornphilas W, Norman BA (2007) A methodology to create robust job rotation schedules. Ann Oper Res 155:339–360 es_ES
dc.relation.references Nanthavanij S, Kullpattaranirun T (2001) A genetic algorithm approach to determine minimax work assignments. Int J Ind Eng Theor 8:176–185 es_ES
dc.relation.references Kullpattaranirun T, Nanthavanij S (2005) A heuristic genetic algorithm for solving complex safety-based work assignment problems. Int J Ind Eng Theor 12:45–57 es_ES
dc.relation.references Diego-Mas JA, Asensio-Cuesta S, Sanchez-Romero MA, Artacho-Ramirez MA (2009) A multi-criteria genetic algorithm for the generation of job rotation schedules. Int J Ind Ergon 39:23–33 es_ES
dc.relation.references Seçkiner SU, Kurt M (2007) A simulated annealing approach to the solution of job rotation scheduling problems. Appl Math Comput 188:31–45 es_ES
dc.relation.references Seçkiner SU, Kurt M (2008) Ant colony optimization for the job rotation scheduling problem. Appl Math Comput 201:149–160 es_ES
dc.relation.references Spencer L, Spencer S (1993) Competence at work: models for superior performance. Wiley, New York es_ES
dc.relation.references Ashkanasy NM, Hartel CEJ, Daus CS (2002) Diversity and emotion: the new frontiers in organizational behavior and research. J Manag 28:307–338 es_ES
dc.relation.references Triggs DD, King PM (2000) Job rotation: an administrative strategy for hazard control. Prof Saf 45:32–34 es_ES
dc.relation.references Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, Michigan es_ES
dc.relation.references Emodi T, Zhang WJ (2008) Injury analysis in assembly and production lines: a state of the art review. Int J Ergon Hum Factors 30:11–38 es_ES
dc.relation.references Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13:533–549 es_ES
dc.relation.references Chambers LD (1995) Practical handbook of genetic algorithms: new frontiers, 1st edn. CRC, Boca Raton, Florida es_ES
dc.relation.references Chambers LD (1998) Practical handbook of genetic algorithms: complex coding system, 1st edn. CRC, Boca Raton, Florida es_ES
dc.relation.references Chambers LD (2000) Practical handbook of genetic algorithms: applications, 2nd edn. CRC, Boca Raton, Florida es_ES
dc.relation.references Davis L (1991) Handbook of genetic algorithms. Van Nostrand Reinhold, New York es_ES
dc.relation.references Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Massachusetts es_ES
dc.relation.references Rodgers SH (1986) Ergonomic design for people at work. Van Nostrand Reinhold, New York es_ES
dc.relation.references Rodgers SH (1992) A functional job analysis technique. Occup Med State Art 7:679–711 es_ES
dc.relation.references Waters TR, Putz-Anderson V, Garg A, Fine LJ (1993) Revised NIOSH equation for the design and evaluation of manual lifting tasks. Ergonomics 7:749–776 es_ES
dc.relation.references McAtamney L, Corlett EN (1993) RULA: A survey method for the investigation of work-related upper limb disorders. Appl Ergon 24:91–99 es_ES


This item appears in the following Collection(s)

Show simple item record