- -

High-pressure optical and vibrational properties of CdGa2Se4: Order-disorder processes in adamantine compounds

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High-pressure optical and vibrational properties of CdGa2Se4: Order-disorder processes in adamantine compounds

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gomis Hilario, Oscar es_ES
dc.contributor.author Vilaplana Cerda, Rosario Isabel es_ES
dc.contributor.author Manjón Herrera, Francisco Javier es_ES
dc.contributor.author Pérez-González, E. es_ES
dc.contributor.author López-Solano, Javier es_ES
dc.contributor.author Rodríguez-Hernández, P. es_ES
dc.contributor.author Muñoz, Alfonso es_ES
dc.contributor.author Errandonea, Daniel es_ES
dc.contributor.author Ruiz Fuertes, Javier es_ES
dc.contributor.author Segura Garcia del Rio, Alfredo es_ES
dc.contributor.author Santamaría Pérez, David es_ES
dc.contributor.author Tiginyanu, Ivan es_ES
dc.contributor.author Ursaki, Veacheslav es_ES
dc.date.accessioned 2014-02-21T12:30:58Z
dc.date.available 2014-02-21T12:30:58Z
dc.date.issued 2012-01-10
dc.identifier.issn 0021-8979
dc.identifier.uri http://hdl.handle.net/10251/35867
dc.description.abstract High-pressure optical absorption and Raman scattering measurements have been performed in defect chalcopyrite (DC) CdGa2Se4 up to 22 GPa during two pressure cycles to investigate the pressure-induced order-disorder phase transitions taking place in this ordered-vacancy compound. Our measurements reveal that on decreasing pressure from 22 GPa, the sample does not revert to the initial phase but likely to a disordered zinc blende (DZ) structure the direct bandgap and Raman-active modes of which have been measured during a second upstroke. Our measurements have been complemented with electronic structure and lattice dynamical ab initio calculations. Lattice dynamical calculations have helped us to discuss and assign the symmetries of the Raman modes of the DC phase. Additionally, our electronic band structure calculations have helped us in discussing the order-disorder effects taking place above 6¿8 GPa during the first upstroke. © 2012 American Institute of Physics es_ES
dc.description.sponsorship This study was supported by the Spanish government MICINN under Grant No. MAT2010-21270-C04-01/03/04; by the Generalitat Valenciana (Project No. GV06/151), by MALTA Consolider Ingenio 2010 project (CSD2007-00045), by the Vicerrectorado de Investigacion y Desarrollo of the Universitat Politecnica de Valencia (UPV2012-1469), and by the Spanish MICINN under Project No. CTQ2009-14596-C02-01 and Comunidad de Madrid and the European Social Fund Grant No. S2009/PPQ-1551 4161893 (QUI-MAPRES). E.P-G., J.L-S., A. M., and P.R-H. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster. en_EN
dc.language Inglés es_ES
dc.publisher American Institute of Physics (AIP) es_ES
dc.relation.ispartof Journal of Applied Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject high pressure es_ES
dc.subject band gap es_ES
dc.subject phase transitions es_ES
dc.subject raman spectra es_ES
dc.subject optical absorption es_ES
dc.subject zinc es_ES
dc.subject x-ray diffraction es_ES
dc.subject photonic bandgap materials es_ES
dc.subject vacancies es_ES
dc.subject Raman scattering es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title High-pressure optical and vibrational properties of CdGa2Se4: Order-disorder processes in adamantine compounds es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.3675162
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-04/ES/CRECIMIENTO Y CARACTERIZACION DE NANOESTRUCTURAS DE OXIDOS METALICOS BAJO ALTAS PRESIONES/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-03/ES/MATERIALES, NANOMATERIALES Y AGREGRADOS BAJO CONDICIONES EXTREMAS. PROPIEDADES ELECTRONICAS Y DINAMICAS DESDE METODOS AB INITIO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV06%2F151/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-01/ES/SINTESIS Y CARACTERIZACION OPTICA, ELECTRONICA, ESTRUCTURAL Y VIBRACIONAL DE NUEVOS MATERIALES BAJO CONDICIONES EXTREMAS DE PRESION Y TEMPERATURA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00045/ES/MATERIA A ALTA PRESION/
dc.relation.projectID info:eu-repo/grantAgreement/UPV//20121469/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2009-14596-C02-01/ES/Compresibilidad de Materiales/
dc.relation.projectID info:eu-repo/grantAgreement/Gobierno de la Comunidad de Madrid//S2009%2FPPQ-1551/ES/Química a alta presión/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada es_ES
dc.description.bibliographicCitation Gomis Hilario, O.; Vilaplana Cerda, RI.; Manjón Herrera, FJ.; Pérez-González, E.; López-Solano, J.; Rodríguez-Hernández, P.; Muñoz, A.... (2012). High-pressure optical and vibrational properties of CdGa2Se4: Order-disorder processes in adamantine compounds. Journal of Applied Physics. 111(1):135181-1351815. https://doi.org/10.1063/1.3675162 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.3675162 es_ES
dc.description.upvformatpinicio 135181 es_ES
dc.description.upvformatpfin 1351815 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 111 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 206949
dc.identifier.eissn 1089-7550
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Universitat Politècnica de València
dc.contributor.funder European Regional Development Fund
dc.contributor.funder Comunidad de Madrid
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references A. MacKinnon, in Tables of Numerical Data and Functional Relationships in Science and Technology, edited by O. Madelung, M. Schulz, and H. Weiss (Springer-Verlag, Berlin, 1985), Vol. 17, p. 124. es_ES
dc.description.references Bernard, J. E., & Zunger, A. (1988). Ordered-vacancy-compound semiconductors: PseudocubicCdIn2Se4. Physical Review B, 37(12), 6835-6856. doi:10.1103/physrevb.37.6835 es_ES
dc.description.references Jiang, X., & Lambrecht, W. R. L. (2004). Electronic band structure of ordered vacancy defect chalcopyrite compounds with formulaII−III2−VI4. Physical Review B, 69(3). doi:10.1103/physrevb.69.035201 es_ES
dc.description.references Zunger, A., Wagner, S., & Petroff, P. M. (1993). New materials and structures for photovoltaics. Journal of Electronic Materials, 22(1), 3-16. doi:10.1007/bf02665719 es_ES
dc.description.references Morón, M. C., & Hull, S. (2003). Order-disorder phase transition inZn1−xMnxGa2Se4: Long-range order parameter versusx. Physical Review B, 67(12). doi:10.1103/physrevb.67.125208 es_ES
dc.description.references Joshi, N. V., Luengo, J., & Vera, F. (2007). Optical activity in []ZnGa2S4. Materials Letters, 61(8-9), 1926-1928. doi:10.1016/j.matlet.2006.07.177 es_ES
dc.description.references Krämer, V., Siebert, D., & Febbraro, S. (1984). Structure refinement of cadmium gallium selenide CdGa2Se4. Zeitschrift für Kristallographie, 169(1-4), 283-287. doi:10.1524/zkri.1984.169.1-4.283 es_ES
dc.description.references Gastaldi, L., Simeone, M. G., & Viticoli, S. (1985). Cation ordering and crystal structures in AGa2X4 compounds (CoGa2S4, CdGa2S4, CdGa2Se4, HgGa2Se4, HgGa2Te4). Solid State Communications, 55(7), 605-607. doi:10.1016/0038-1098(85)90821-x es_ES
dc.description.references Ursaki, V. V., Burlakov, I. I., Tiginyanu, I. M., Raptis, Y. S., Anastassakis, E., & Anedda, A. (1999). Phase transitions in defect chalcopyrite compounds under hydrostatic pressure. Physical Review B, 59(1), 257-268. doi:10.1103/physrevb.59.257 es_ES
dc.description.references Mitani, T., Naitou, T., Matsuishi, K., Onari, S., Allakhverdiev, K., Gashimzade, F., & Kerimova, T. (2003). Raman scattering in CdGa2Se4 under pressure. physica status solidi (b), 235(2), 321-325. doi:10.1002/pssb.200301579 es_ES
dc.description.references Fuentes-Cabrera, M. (2001). Ab initiostudy of the vibrational and electronic properties of CdGa2S4and CdGa2Se4under pressure. Journal of Physics: Condensed Matter, 13(45), 10117-10124. doi:10.1088/0953-8984/13/45/301 es_ES
dc.description.references Fuentes-Cabrera, M., & Sankey, O. F. (2001). Theoretical study of the ordered-vacancy semiconducting compound CdAl2Se4. Journal of Physics: Condensed Matter, 13(8), 1669-1684. doi:10.1088/0953-8984/13/8/305 es_ES
dc.description.references Grzechnik, A., Ursaki, V. V., Syassen, K., Loa, I., Tiginyanu, I. M., & Hanfland, M. (2001). Pressure-Induced Phase Transitions in Cadmium Thiogallate CdGa2Se4. Journal of Solid State Chemistry, 160(1), 205-211. doi:10.1006/jssc.2001.9224 es_ES
dc.description.references Manjón, F. J., Gomis, O., Rodríguez-Hernández, P., Pérez-González, E., Muñoz, A., Errandonea, D., … Ursaki, V. V. (2010). Nonlinear pressure dependence of the direct band gap in adamantine ordered-vacancy compounds. Physical Review B, 81(19). doi:10.1103/physrevb.81.195201 es_ES
dc.description.references Eifler, A., Hecht, J.-D., Lippold, G., Riede, V., Grill, W., Krauß, G., & Krämer, V. (1999). Combined infrared and Raman study of the optical phonons of defect chalcopyrite single crystals. Physica B: Condensed Matter, 263-264, 806-808. doi:10.1016/s0921-4526(98)01292-7 es_ES
dc.description.references Eifler, A., Krauss, G., Riede, V., Krämer, V., & Grill, W. (2005). Optical phonon modes and structure of ZnGa2Se4 and ZnGa2S4. Journal of Physics and Chemistry of Solids, 66(11), 2052-2057. doi:10.1016/j.jpcs.2005.09.049 es_ES
dc.description.references Burlakov, I. I., Raptis, Y., Ursaki, V. V., Anastassakis, E., & Tiginyanu, I. M. (1997). Order-disorder phase transition in CdAl2S4 under hydrostatic pressure. Solid State Communications, 101(5), 377-381. doi:10.1016/s0038-1098(96)00602-3 es_ES
dc.description.references Meenakshi, S., Vijyakumar, V., Godwal, B. K., Eifler, A., Orgzall, I., Tkachev, S., & Hochheimer, H. D. (2006). High pressure X-ray diffraction study of CdAl2Se4 and Raman study of AAl2Se4 (A=Hg, Zn) and CdAl2X4 (X=Se, S). Journal of Physics and Chemistry of Solids, 67(8), 1660-1667. doi:10.1016/j.jpcs.2006.02.015 es_ES
dc.description.references Errandonea, D., Kumar, R. S., Manjón, F. J., Ursaki, V. V., & Tiginyanu, I. M. (2008). High-pressure x-ray diffraction study on the structure and phase transitions of the defect-stannite ZnGa2Se4 and defect-chalcopyrite CdGa2S4. Journal of Applied Physics, 104(6), 063524. doi:10.1063/1.2981089 es_ES
dc.description.references Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673 es_ES
dc.description.references Letoullec, R., Pinceaux, J. P., & Loubeyre, P. (1988). The membrane diamond anvil cell: A new device for generating continuous pressure and temperature variations. High Pressure Research, 1(1), 77-90. doi:10.1080/08957958808202482 es_ES
dc.description.references Mujica, A., Rubio, A., Muñoz, A., & Needs, R. J. (2003). High-pressure phases of group-IV, III–V, and II–VI compounds. Reviews of Modern Physics, 75(3), 863-912. doi:10.1103/revmodphys.75.863 es_ES
dc.description.references Tiginyanu, I. M., Lottici, P. P., Razzetti, C., & Gennari, S. (1993). Effects of the Cations on the Raman Spectra of Sulphur Defect Chalcopyrites. Japanese Journal of Applied Physics, 32(S3), 561. doi:10.7567/jjaps.32s3.561 es_ES
dc.description.references Razzetti, C., & Lottici, P. P. (1993). Raman Scattering in Defective AIIB2IIIX4VICompounds and Alloys. Japanese Journal of Applied Physics, 32(S3), 431. doi:10.7567/jjaps.32s3.431 es_ES
dc.description.references Allakhverdiev, K., Gashimzade, F., Kerimova, T., Mitani, T., Naitou, T., Matsuishi, K., & Onari, S. (2003). Raman scattering under pressure in ZnGa2Se4. Journal of Physics and Chemistry of Solids, 64(9-10), 1597-1601. doi:10.1016/s0022-3697(03)00077-5 es_ES
dc.description.references Lottici, P. P., & Razzetti, C. (1983). A comparison of the raman spectra of ZnGa2Se4 and other gallium defect chalcopyrites. Solid State Communications, 46(9), 681-684. doi:10.1016/0038-1098(83)90506-9 es_ES
dc.description.references Wei, S.-H., Zhang, S. B., & Zunger, A. (1999). Band structure and stability of zinc-blende-based semiconductor polytypes. Physical Review B, 59(4), R2478-R2481. doi:10.1103/physrevb.59.r2478 es_ES
dc.description.references Garbato, L., Ledda, F., & Rucci, A. (1987). Structural distortions and polymorphic behaviour in ABC2 and AB2C4 tetrahedral compounds. Progress in Crystal Growth and Characterization, 15(1), 1-41. doi:10.1016/0146-3535(87)90008-6 es_ES
dc.description.references Besson, J. M., Itié, J. P., Polian, A., Weill, G., Mansot, J. L., & Gonzalez, J. (1991). High-pressure phase transition and phase diagram of gallium arsenide. Physical Review B, 44(9), 4214-4234. doi:10.1103/physrevb.44.4214 es_ES
dc.description.references Nakajima, A., Yoshihara, A., & Ishigame, M. (1994). Defect-induced Raman spectra in dopedCeO2. Physical Review B, 50(18), 13297-13307. doi:10.1103/physrevb.50.13297 es_ES
dc.description.references Li, H. D., Zhang, S. L., Yang, H. B., Zou, G. T., Yang, Y. Y., Yue, K. T., … Yan, Y. (2002). Raman spectroscopy of nanocrystalline GaN synthesized by arc plasma. Journal of Applied Physics, 91(7), 4562-4567. doi:10.1063/1.1452762 es_ES
dc.description.references Manjón, F. J., Marí, B., Serrano, J., & Romero, A. H. (2005). Silent Raman modes in zinc oxide and related nitrides. Journal of Applied Physics, 97(5), 053516. doi:10.1063/1.1856222 es_ES
dc.description.references Manjón, F. J., Errandonea, D., Segura, A., Chervin, J. C., & Muñoz, V. (2002). Precursor effects of the Rhombohedral-to-Cubic Phase Transition in Indium Selenide. High Pressure Research, 22(2), 261-266. doi:10.1080/08957950212819 es_ES
dc.description.references Bilz, H., & Kress, W. (1979). Phonon Dispersion Relations in Insulators. Springer Series in Solid-State Sciences. doi:10.1007/978-3-642-81347-4 es_ES
dc.description.references Meenakshi, S., Vijayakumar, V., Eifler, A., & Hochheimer, H. D. (2010). Pressure-induced phase transition in defect Chalcopyrites HgAl2Se4 and CdAl2S4. Journal of Physics and Chemistry of Solids, 71(5), 832-835. doi:10.1016/j.jpcs.2010.02.007 es_ES
dc.description.references Talwar, D. N., Vandevyver, M., Kunc, K., & Zigone, M. (1981). Lattice dynamics of zinc chalcogenides under compression: Phonon dispersion, mode Grüneisen, and thermal expansion. Physical Review B, 24(2), 741-753. doi:10.1103/physrevb.24.741 es_ES
dc.description.references Koval, L. S., Markus, M. M., Radautsan, S. I., Sobolev, V. V., & Stanchu, A. V. (1972). Optical properties of the two modifications of CdIn2Se4. Physica Status Solidi (a), 9(1), K69-K72. doi:10.1002/pssa.2210090164 es_ES
dc.description.references (1996). physica status solidi (b), 198(1). doi:10.1002/pssb.v198:1 es_ES
dc.description.references Edwards, A. L., & Drickamer, H. G. (1961). Effect of Pressure on the Absorption Edges of Some III-V, II-VI, and I-VII Compounds. Physical Review, 122(4), 1149-1157. doi:10.1103/physrev.122.1149 es_ES
dc.description.references Wei, S.-H., & Zunger, A. (1999). Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: Chemical trends. Physical Review B, 60(8), 5404-5411. doi:10.1103/physrevb.60.5404 es_ES
dc.description.references GonzáLez, J., Power, C., Chervin, J. C., Hamel, G., & Snoeck, E. (2002). Nanocrystals of CdSe Formed by the Pressure Cycle Method. High Pressure Research, 22(2), 271-275. doi:10.1080/08957950212811 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem