- -

High speed fracture fixation: assessing resulting fixation stability and fastener withdrawal strength

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High speed fracture fixation: assessing resulting fixation stability and fastener withdrawal strength

Mostrar el registro completo del ítem

Prygoski, MP.; Sánchez Caballero, S.; Schmid, SR.; Lozier, AJ.; Sellés Cantó, MÁ. (2013). High speed fracture fixation: assessing resulting fixation stability and fastener withdrawal strength. Journal of Biomechanical Engineering. 135(9):9100801-9100810. https://doi.org/10.1115/1.4024641

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/36022

Ficheros en el ítem

Metadatos del ítem

Título: High speed fracture fixation: assessing resulting fixation stability and fastener withdrawal strength
Autor: Prygoski, M. P. Sánchez Caballero, Samuel Schmid, S. R. Lozier, Antony J. Sellés Cantó, Miguel Ángel
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
A new method of bone fracture fixation has been developed in which fixation darts (small diameter nails/pins) are driven across a fracture site at high velocity with a pneumati- cally powered gun. When fixation darts are ...[+]
Palabras clave: Bone fracture fixation , High speed , Fixation darts , Nails , Screws , Pullout strength , Withdrawal strength
Derechos de uso: Cerrado
Fuente:
Journal of Biomechanical Engineering. (issn: 0148-0731 )
DOI: 10.1115/1.4024641
Editorial:
American Society of Mechanical Engineers (ASME)
Versión del editor: http://biomechanical.asmedigitalcollection.asme.org/article.aspx?articleid=1693314
Código del Proyecto:
info:eu-repo/grantAgreement/MRMC//W81XWH-09-1-0741/
Agradecimientos:
The authors wish to acknowledge the support of Zimmer in developing the technology. The personal support of Dr. Michael Hawkins and Dr. Hallie Brinkerhuff are especially appreciated. The research was financially supported ...[+]
Tipo: Artículo

References

Miller, D. L., & Goswami, T. (2007). A review of locking compression plate biomechanics and their advantages as internal fixators in fracture healing. Clinical Biomechanics, 22(10), 1049-1062. doi:10.1016/j.clinbiomech.2007.08.004

Claes, L., Augat, P., Suger, G., & Wilke, H.-J. (1997). Influence of size and stability of the osteotomy gap on the success of fracture healing. Journal of Orthopaedic Research, 15(4), 577-584. doi:10.1002/jor.1100150414

Claes, L. ., & Heigele, C. . (1999). Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. Journal of Biomechanics, 32(3), 255-266. doi:10.1016/s0021-9290(98)00153-5 [+]
Miller, D. L., & Goswami, T. (2007). A review of locking compression plate biomechanics and their advantages as internal fixators in fracture healing. Clinical Biomechanics, 22(10), 1049-1062. doi:10.1016/j.clinbiomech.2007.08.004

Claes, L., Augat, P., Suger, G., & Wilke, H.-J. (1997). Influence of size and stability of the osteotomy gap on the success of fracture healing. Journal of Orthopaedic Research, 15(4), 577-584. doi:10.1002/jor.1100150414

Claes, L. ., & Heigele, C. . (1999). Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. Journal of Biomechanics, 32(3), 255-266. doi:10.1016/s0021-9290(98)00153-5

Ezquerro, F., Jiménez, S., Pérez, A., Prado, M., de Diego, G., & Simón, A. (2007). The influence of wire positioning upon the initial stability of scaphoid fractures fixed using Kirschner wires. Medical Engineering & Physics, 29(6), 652-660. doi:10.1016/j.medengphy.2006.08.005

Gefen, A. (2002). Optimizing the biomechanical compatibility of orthopedic screws for bone fracture fixation. Medical Engineering & Physics, 24(5), 337-347. doi:10.1016/s1350-4533(02)00027-9

Fan, Y., Xiu, K., Duan, H., & Zhang, M. (2008). Biomechanical and histological evaluation of the application of biodegradable poly-l-lactic cushion to the plate internal fixation for bone fracture healing. Clinical Biomechanics, 23, S7-S16. doi:10.1016/j.clinbiomech.2008.01.005

Board, T. N., Yang, L., & Saleh, M. (2007). Why fine-wire fixators work: An analysis of pressure distribution at the wire–bone interface. Journal of Biomechanics, 40(1), 20-25. doi:10.1016/j.jbiomech.2005.12.005

Gupta, A. P., & Kumar, V. (2007). New emerging trends in synthetic biodegradable polymers – Polylactide: A critique. European Polymer Journal, 43(10), 4053-4074. doi:10.1016/j.eurpolymj.2007.06.045

Claes, L. E., Ignatius, A. A., Rehm, K. E., & Scholz, C. (1996). New bioresorbable pin for the reduction of small bony fragments: design, mechanical properties and in vitro degradation. Biomaterials, 17(16), 1621-1626. doi:10.1016/0142-9612(95)00327-4

Staiger, M. P., Pietak, A. M., Huadmai, J., & Dias, G. (2006). Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 27(9), 1728-1734. doi:10.1016/j.biomaterials.2005.10.003

Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C. J., & Windhagen, H. (2005). In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 26(17), 3557-3563. doi:10.1016/j.biomaterials.2004.09.049

Viano, D. C., & Stalnaker, R. L. (1980). Mechanisms of femoral fracture. Journal of Biomechanics, 13(8), 701-715. doi:10.1016/0021-9290(80)90356-5

Atkinson, P. J., & Haut, R. C. (2001). Impact Responses of the Flexed Human Knee Using a Deformable Impact Interface. Journal of Biomechanical Engineering, 123(3), 205-211. doi:10.1115/1.1372320

Sirbu, P. D., Carata, E., Petreus, T., Asaftei, R., and Botez, P., 2009, “Minimally Invasive Plate Osteosynthesis With Systems With Angular Stability in Complex Distal Femoral Fractures. Design, Biomechanics and Clinical Results,” IEEE Proceedings of the Advanced Technologies for Enhanced Quality of Life, pp. 36–41.

Thompson, M. S., McCarthy, I. D., Lidgren, L., & Ryd, L. (2003). Compressive and Shear Properties of Commercially Available Polyurethane Foams. Journal of Biomechanical Engineering, 125(5), 732-734. doi:10.1115/1.1614820

Rincón-Kohli, L., & Zysset, P. K. (2008). Multi-axial mechanical properties of human trabecular bone. Biomechanics and Modeling in Mechanobiology, 8(3), 195-208. doi:10.1007/s10237-008-0128-z

Morgan, E. F., & Keaveny, T. M. (2001). Dependence of yield strain of human trabecular bone on anatomic site. Journal of Biomechanics, 34(5), 569-577. doi:10.1016/s0021-9290(01)00011-2

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem