Mostrar el registro sencillo del ítem
dc.contributor.author | Prygoski, M. P. | es_ES |
dc.contributor.author | Sánchez Caballero, Samuel | es_ES |
dc.contributor.author | Schmid, S. R. | es_ES |
dc.contributor.author | Lozier, Antony J. | es_ES |
dc.contributor.author | Sellés Cantó, Miguel Ángel | es_ES |
dc.date.accessioned | 2014-02-27T17:20:33Z | |
dc.date.issued | 2013-09 | |
dc.identifier.issn | 0148-0731 | |
dc.identifier.uri | http://hdl.handle.net/10251/36022 | |
dc.description.abstract | A new method of bone fracture fixation has been developed in which fixation darts (small diameter nails/pins) are driven across a fracture site at high velocity with a pneumati- cally powered gun. When fixation darts are inserted oblique to one another, kinematic constraints prevent fragment motion and allow bone healing to progress. The primary aim of this study is to determine if fixation darts can provide reasonable fixation stability compared to bone screws, which were used as a benchmark since they represent a simple, yet well-established, surgical technique. The first objective was to evaluate macro-level stability using different numbers of darts inserted parallel and oblique to each other; ex- perimental comparisons were undertaken in a bone analog model. Experimental results showed fixation darts could not be substituted for screws on a one-to-one basis, but that a plurality of fixation darts provided comparable fixation to two bone screws while allow- ing for faster insertion and damaging less bone. A second objective was to evaluate micro-level stability; a finite element model was created in order to provide a detailed look at the stress state surrounding the fixation darts and the evolution of the fracture gap. Even with relatively weak fixation dart configurations, the fracture gap was main- tained below physiological thresholds for bone healing. Most failures of the fixed frac- tures were attributed to fixation dart pullout from the cancellous structure. The final objective of the study was to characterize this mode of failure with separate fixation dart and screw pullout tests conducted in SawbonesV cancellous foam and fresh porcine can- cellous bone. The results showed that the cancellous foam was an acceptable substitute for real bone and provided a conservative estimate of the fixation darts¿ performance rel- ative to bone screws. A final comparison between experimental and numerically predicted pullout strengths provided confirmation that the model and experiments were consistent. | es_ES |
dc.description.sponsorship | The authors wish to acknowledge the support of Zimmer in developing the technology. The personal support of Dr. Michael Hawkins and Dr. Hallie Brinkerhuff are especially appreciated. The research was financially supported by the U.S. Army Medical Research and Materiel Command, Contract No. W81XWH-09-1-0741. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Society of Mechanical Engineers (ASME) | es_ES |
dc.relation.ispartof | Journal of Biomechanical Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Bone fracture fixation | es_ES |
dc.subject | High speed | es_ES |
dc.subject | Fixation darts | es_ES |
dc.subject | Nails | es_ES |
dc.subject | Screws | es_ES |
dc.subject | Pullout strength | es_ES |
dc.subject | Withdrawal strength | es_ES |
dc.subject.classification | INGENIERIA DE LOS PROCESOS DE FABRICACION | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | High speed fracture fixation: assessing resulting fixation stability and fastener withdrawal strength | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1115/1.4024641 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MRMC//W81XWH-09-1-0741/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Prygoski, MP.; Sánchez Caballero, S.; Schmid, SR.; Lozier, AJ.; Sellés Cantó, MÁ. (2013). High speed fracture fixation: assessing resulting fixation stability and fastener withdrawal strength. Journal of Biomechanical Engineering. 135(9):9100801-9100810. https://doi.org/10.1115/1.4024641 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://biomechanical.asmedigitalcollection.asme.org/article.aspx?articleid=1693314 | es_ES |
dc.description.upvformatpinicio | 9100801 | es_ES |
dc.description.upvformatpfin | 9100810 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 135 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.senia | 251930 | |
dc.contributor.funder | Medical Research and Materiel Command | es_ES |
dc.description.references | Miller, D. L., & Goswami, T. (2007). A review of locking compression plate biomechanics and their advantages as internal fixators in fracture healing. Clinical Biomechanics, 22(10), 1049-1062. doi:10.1016/j.clinbiomech.2007.08.004 | es_ES |
dc.description.references | Claes, L., Augat, P., Suger, G., & Wilke, H.-J. (1997). Influence of size and stability of the osteotomy gap on the success of fracture healing. Journal of Orthopaedic Research, 15(4), 577-584. doi:10.1002/jor.1100150414 | es_ES |
dc.description.references | Claes, L. ., & Heigele, C. . (1999). Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. Journal of Biomechanics, 32(3), 255-266. doi:10.1016/s0021-9290(98)00153-5 | es_ES |
dc.description.references | Ezquerro, F., Jiménez, S., Pérez, A., Prado, M., de Diego, G., & Simón, A. (2007). The influence of wire positioning upon the initial stability of scaphoid fractures fixed using Kirschner wires. Medical Engineering & Physics, 29(6), 652-660. doi:10.1016/j.medengphy.2006.08.005 | es_ES |
dc.description.references | Gefen, A. (2002). Optimizing the biomechanical compatibility of orthopedic screws for bone fracture fixation. Medical Engineering & Physics, 24(5), 337-347. doi:10.1016/s1350-4533(02)00027-9 | es_ES |
dc.description.references | Fan, Y., Xiu, K., Duan, H., & Zhang, M. (2008). Biomechanical and histological evaluation of the application of biodegradable poly-l-lactic cushion to the plate internal fixation for bone fracture healing. Clinical Biomechanics, 23, S7-S16. doi:10.1016/j.clinbiomech.2008.01.005 | es_ES |
dc.description.references | Board, T. N., Yang, L., & Saleh, M. (2007). Why fine-wire fixators work: An analysis of pressure distribution at the wire–bone interface. Journal of Biomechanics, 40(1), 20-25. doi:10.1016/j.jbiomech.2005.12.005 | es_ES |
dc.description.references | Gupta, A. P., & Kumar, V. (2007). New emerging trends in synthetic biodegradable polymers – Polylactide: A critique. European Polymer Journal, 43(10), 4053-4074. doi:10.1016/j.eurpolymj.2007.06.045 | es_ES |
dc.description.references | Claes, L. E., Ignatius, A. A., Rehm, K. E., & Scholz, C. (1996). New bioresorbable pin for the reduction of small bony fragments: design, mechanical properties and in vitro degradation. Biomaterials, 17(16), 1621-1626. doi:10.1016/0142-9612(95)00327-4 | es_ES |
dc.description.references | Staiger, M. P., Pietak, A. M., Huadmai, J., & Dias, G. (2006). Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 27(9), 1728-1734. doi:10.1016/j.biomaterials.2005.10.003 | es_ES |
dc.description.references | Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C. J., & Windhagen, H. (2005). In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 26(17), 3557-3563. doi:10.1016/j.biomaterials.2004.09.049 | es_ES |
dc.description.references | Viano, D. C., & Stalnaker, R. L. (1980). Mechanisms of femoral fracture. Journal of Biomechanics, 13(8), 701-715. doi:10.1016/0021-9290(80)90356-5 | es_ES |
dc.description.references | Atkinson, P. J., & Haut, R. C. (2001). Impact Responses of the Flexed Human Knee Using a Deformable Impact Interface. Journal of Biomechanical Engineering, 123(3), 205-211. doi:10.1115/1.1372320 | es_ES |
dc.description.references | Sirbu, P. D., Carata, E., Petreus, T., Asaftei, R., and Botez, P., 2009, “Minimally Invasive Plate Osteosynthesis With Systems With Angular Stability in Complex Distal Femoral Fractures. Design, Biomechanics and Clinical Results,” IEEE Proceedings of the Advanced Technologies for Enhanced Quality of Life, pp. 36–41. | es_ES |
dc.description.references | Thompson, M. S., McCarthy, I. D., Lidgren, L., & Ryd, L. (2003). Compressive and Shear Properties of Commercially Available Polyurethane Foams. Journal of Biomechanical Engineering, 125(5), 732-734. doi:10.1115/1.1614820 | es_ES |
dc.description.references | Rincón-Kohli, L., & Zysset, P. K. (2008). Multi-axial mechanical properties of human trabecular bone. Biomechanics and Modeling in Mechanobiology, 8(3), 195-208. doi:10.1007/s10237-008-0128-z | es_ES |
dc.description.references | Morgan, E. F., & Keaveny, T. M. (2001). Dependence of yield strain of human trabecular bone on anatomic site. Journal of Biomechanics, 34(5), 569-577. doi:10.1016/s0021-9290(01)00011-2 | es_ES |