- -

High speed fracture fixation: assessing resulting fixation stability and fastener withdrawal strength

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High speed fracture fixation: assessing resulting fixation stability and fastener withdrawal strength

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Prygoski, M. P. es_ES
dc.contributor.author Sánchez Caballero, Samuel es_ES
dc.contributor.author Schmid, S. R. es_ES
dc.contributor.author Lozier, Antony J. es_ES
dc.contributor.author Sellés Cantó, Miguel Ángel es_ES
dc.date.accessioned 2014-02-27T17:20:33Z
dc.date.issued 2013-09
dc.identifier.issn 0148-0731
dc.identifier.uri http://hdl.handle.net/10251/36022
dc.description.abstract A new method of bone fracture fixation has been developed in which fixation darts (small diameter nails/pins) are driven across a fracture site at high velocity with a pneumati- cally powered gun. When fixation darts are inserted oblique to one another, kinematic constraints prevent fragment motion and allow bone healing to progress. The primary aim of this study is to determine if fixation darts can provide reasonable fixation stability compared to bone screws, which were used as a benchmark since they represent a simple, yet well-established, surgical technique. The first objective was to evaluate macro-level stability using different numbers of darts inserted parallel and oblique to each other; ex- perimental comparisons were undertaken in a bone analog model. Experimental results showed fixation darts could not be substituted for screws on a one-to-one basis, but that a plurality of fixation darts provided comparable fixation to two bone screws while allow- ing for faster insertion and damaging less bone. A second objective was to evaluate micro-level stability; a finite element model was created in order to provide a detailed look at the stress state surrounding the fixation darts and the evolution of the fracture gap. Even with relatively weak fixation dart configurations, the fracture gap was main- tained below physiological thresholds for bone healing. Most failures of the fixed frac- tures were attributed to fixation dart pullout from the cancellous structure. The final objective of the study was to characterize this mode of failure with separate fixation dart and screw pullout tests conducted in SawbonesV cancellous foam and fresh porcine can- cellous bone. The results showed that the cancellous foam was an acceptable substitute for real bone and provided a conservative estimate of the fixation darts¿ performance rel- ative to bone screws. A final comparison between experimental and numerically predicted pullout strengths provided confirmation that the model and experiments were consistent. es_ES
dc.description.sponsorship The authors wish to acknowledge the support of Zimmer in developing the technology. The personal support of Dr. Michael Hawkins and Dr. Hallie Brinkerhuff are especially appreciated. The research was financially supported by the U.S. Army Medical Research and Materiel Command, Contract No. W81XWH-09-1-0741. en_EN
dc.language Inglés es_ES
dc.publisher American Society of Mechanical Engineers (ASME) es_ES
dc.relation.ispartof Journal of Biomechanical Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bone fracture fixation es_ES
dc.subject High speed es_ES
dc.subject Fixation darts es_ES
dc.subject Nails es_ES
dc.subject Screws es_ES
dc.subject Pullout strength es_ES
dc.subject Withdrawal strength es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title High speed fracture fixation: assessing resulting fixation stability and fastener withdrawal strength es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1115/1.4024641
dc.relation.projectID info:eu-repo/grantAgreement/MRMC//W81XWH-09-1-0741/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Prygoski, MP.; Sánchez Caballero, S.; Schmid, SR.; Lozier, AJ.; Sellés Cantó, MÁ. (2013). High speed fracture fixation: assessing resulting fixation stability and fastener withdrawal strength. Journal of Biomechanical Engineering. 135(9):9100801-9100810. https://doi.org/10.1115/1.4024641 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://biomechanical.asmedigitalcollection.asme.org/article.aspx?articleid=1693314 es_ES
dc.description.upvformatpinicio 9100801 es_ES
dc.description.upvformatpfin 9100810 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 135 es_ES
dc.description.issue 9 es_ES
dc.relation.senia 251930
dc.contributor.funder Medical Research and Materiel Command es_ES
dc.description.references Miller, D. L., & Goswami, T. (2007). A review of locking compression plate biomechanics and their advantages as internal fixators in fracture healing. Clinical Biomechanics, 22(10), 1049-1062. doi:10.1016/j.clinbiomech.2007.08.004 es_ES
dc.description.references Claes, L., Augat, P., Suger, G., & Wilke, H.-J. (1997). Influence of size and stability of the osteotomy gap on the success of fracture healing. Journal of Orthopaedic Research, 15(4), 577-584. doi:10.1002/jor.1100150414 es_ES
dc.description.references Claes, L. ., & Heigele, C. . (1999). Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. Journal of Biomechanics, 32(3), 255-266. doi:10.1016/s0021-9290(98)00153-5 es_ES
dc.description.references Ezquerro, F., Jiménez, S., Pérez, A., Prado, M., de Diego, G., & Simón, A. (2007). The influence of wire positioning upon the initial stability of scaphoid fractures fixed using Kirschner wires. Medical Engineering & Physics, 29(6), 652-660. doi:10.1016/j.medengphy.2006.08.005 es_ES
dc.description.references Gefen, A. (2002). Optimizing the biomechanical compatibility of orthopedic screws for bone fracture fixation. Medical Engineering & Physics, 24(5), 337-347. doi:10.1016/s1350-4533(02)00027-9 es_ES
dc.description.references Fan, Y., Xiu, K., Duan, H., & Zhang, M. (2008). Biomechanical and histological evaluation of the application of biodegradable poly-l-lactic cushion to the plate internal fixation for bone fracture healing. Clinical Biomechanics, 23, S7-S16. doi:10.1016/j.clinbiomech.2008.01.005 es_ES
dc.description.references Board, T. N., Yang, L., & Saleh, M. (2007). Why fine-wire fixators work: An analysis of pressure distribution at the wire–bone interface. Journal of Biomechanics, 40(1), 20-25. doi:10.1016/j.jbiomech.2005.12.005 es_ES
dc.description.references Gupta, A. P., & Kumar, V. (2007). New emerging trends in synthetic biodegradable polymers – Polylactide: A critique. European Polymer Journal, 43(10), 4053-4074. doi:10.1016/j.eurpolymj.2007.06.045 es_ES
dc.description.references Claes, L. E., Ignatius, A. A., Rehm, K. E., & Scholz, C. (1996). New bioresorbable pin for the reduction of small bony fragments: design, mechanical properties and in vitro degradation. Biomaterials, 17(16), 1621-1626. doi:10.1016/0142-9612(95)00327-4 es_ES
dc.description.references Staiger, M. P., Pietak, A. M., Huadmai, J., & Dias, G. (2006). Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 27(9), 1728-1734. doi:10.1016/j.biomaterials.2005.10.003 es_ES
dc.description.references Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C. J., & Windhagen, H. (2005). In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 26(17), 3557-3563. doi:10.1016/j.biomaterials.2004.09.049 es_ES
dc.description.references Viano, D. C., & Stalnaker, R. L. (1980). Mechanisms of femoral fracture. Journal of Biomechanics, 13(8), 701-715. doi:10.1016/0021-9290(80)90356-5 es_ES
dc.description.references Atkinson, P. J., & Haut, R. C. (2001). Impact Responses of the Flexed Human Knee Using a Deformable Impact Interface. Journal of Biomechanical Engineering, 123(3), 205-211. doi:10.1115/1.1372320 es_ES
dc.description.references Sirbu, P. D., Carata, E., Petreus, T., Asaftei, R., and Botez, P., 2009, “Minimally Invasive Plate Osteosynthesis With Systems With Angular Stability in Complex Distal Femoral Fractures. Design, Biomechanics and Clinical Results,” IEEE Proceedings of the Advanced Technologies for Enhanced Quality of Life, pp. 36–41. es_ES
dc.description.references Thompson, M. S., McCarthy, I. D., Lidgren, L., & Ryd, L. (2003). Compressive and Shear Properties of Commercially Available Polyurethane Foams. Journal of Biomechanical Engineering, 125(5), 732-734. doi:10.1115/1.1614820 es_ES
dc.description.references Rincón-Kohli, L., & Zysset, P. K. (2008). Multi-axial mechanical properties of human trabecular bone. Biomechanics and Modeling in Mechanobiology, 8(3), 195-208. doi:10.1007/s10237-008-0128-z es_ES
dc.description.references Morgan, E. F., & Keaveny, T. M. (2001). Dependence of yield strain of human trabecular bone on anatomic site. Journal of Biomechanics, 34(5), 569-577. doi:10.1016/s0021-9290(01)00011-2 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem