- -

Mean-VaR portfolio selection under real constraints

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mean-VaR portfolio selection under real constraints

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Baixauli-Soler, J. Samuel es_ES
dc.contributor.author Alfaro-Cid, Eva es_ES
dc.contributor.author Fernández-Blanco, Matilde O. es_ES
dc.date.accessioned 2014-03-10T09:47:05Z
dc.date.issued 2011-02
dc.identifier.issn 0927-7099
dc.identifier.uri http://hdl.handle.net/10251/36309
dc.description.abstract [EN] This paper is concerned with asset allocation under real constraints when VaR is the risk measure to minimize. Our paper makes a contribution in several ways, we use a risk measure that is not linear programming solvable, we introduce real constraints, such as minimum transaction units and non-linear cost structure and, finally, we avoid the use of smoothing techniques. The approach we propose is based on multiobjective genetic algorithms. The results presented show the adequacy of the method for the portfolio optimization problem and emphasize the importance of dealing with real constraints during the optimization process. es_ES
dc.description.sponsorship Financial support under project ECO 2008-02846 is also acknowledged.
dc.format.extent 19 es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Computational Economics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Portfolio selection es_ES
dc.subject Heuristics es_ES
dc.subject Optimization es_ES
dc.subject Risk management es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Mean-VaR portfolio selection under real constraints es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1007/s10614-009-9195-1
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//ECO2008-02846/ES/NUEVAS TECNICAS PARA LA GESTION DEL RIESGO DE MERCADO Y DE CREDITO/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica es_ES
dc.description.bibliographicCitation Baixauli-Soler, JS.; Alfaro-Cid, E.; Fernández-Blanco, MO. (2011). Mean-VaR portfolio selection under real constraints. Computational Economics. 37(2):113-131. https://doi.org/10.1007/s10614-009-9195-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.dx.org/10.1007/s10614-009-9195-1 es_ES
dc.description.upvformatpinicio 113 es_ES
dc.description.upvformatpfin 131 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 37 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 211109
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.description.references Arnott R. D., Wagner W. H. (1990) The measurement and control of trading costs. Financial Analysts Journal 46: 73–80 es_ES
dc.description.references Arzac E. R., Bawa V. S. (1977) Portfolio choice and equilibrium in capital markets with safety-first investors. Journal of Financial Economics 4: 277–288 es_ES
dc.description.references Baixauli J. S., Alvarez S. (2004) Analysis of the conditional stock-return distribution under incomplete specification. European Journal of Operational Research 155: 276–283 es_ES
dc.description.references Campbell R., Huisman R., Koedijk K. (2001) Optimal portfolio selection in a Value-at-Risk framework. Journal of Banking and Finance 25: 1789–1804 es_ES
dc.description.references Coello C. A. (2006) Evolutionary multi-objective optimization: A historical view of the field. IEEE Computational Intelligence Magazine 1: 28–36 es_ES
dc.description.references Gaivoronski A. A., Pflug G. (2005) Value-at-risk in portfolio optimization: properties and computational approach. Journal of Risk 7: 1–31 es_ES
dc.description.references Gilli M., Këllezi E., Hysi H. (2006) A data-driven optimization heuristic for downside risk minimization. Journal of Risk 8: 1–18 es_ES
dc.description.references Goldberg D. (1989) Genetic algorithms in searching optimization and machine learning. Addison-Wesley, Reading, MA es_ES
dc.description.references Holland J. H. (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor es_ES
dc.description.references Jansen D. W., Koedijk K.G., de Vries C. G. (2000) Portfolio selection with limited downside risk. Journal of Empirical Finance 7: 247–269 es_ES
dc.description.references Konno H., Wijayanayake A. (2001) Portfolio optimization problem under concave transaction costs and minimal transaction unit constraints. Mathematical Programming 89: 233–250 es_ES
dc.description.references Konno H., Yamazaki H. (1991) Mean-absolute deviation portfolio optimization model and its applications to Tokio stock market. Management Science 37: 519–531 es_ES
dc.description.references Lin C., Liu Y. (2008) Genetic algorithms for portfolio selection problems with minimum transaction lots. European Journal of Operational Research 185: 393–404 es_ES
dc.description.references Mansini R., Speranza M. G. (1999) Heuristics algorithms for the portfolio selection problem with minimum transaction lots. European Journal Operational Research 114: 219–233 es_ES
dc.description.references Mansini R., Speranza M. G. (2005) An exact approach for portfolio selection with transaction costs and rounds. IIE Transactions 37: 919–929 es_ES
dc.description.references Markowitz H. (1952) Portfolio selection. Journal of Finance 7: 7–91 es_ES
dc.description.references Rockafellar R. T., Uryasev S. (2000) Optimization of conditional value-at-risk. Journal of Risk 2: 21–41 es_ES
dc.description.references Ryoo H. S. (2007) A compact mean-variance-skewness model for large-scale portfolio optimization and its application to the NYSE market. Journal of Operational Research Society 58: 505–515 es_ES
dc.description.references Speranza M. G. (1993) Linear programming models for portfolio optimization. Finance 14: 107–123 es_ES
dc.description.references Speranza M. G. (1996) A heuristic algorithm for a portfolio optimization model applied to the Milan stock market. Computers & Operations Research 23: 433–441 es_ES
dc.description.references Yang X. (2006) Improving portfolio efficiency: a genetic algorithm approach. Computational Economics 28: 1–14 es_ES
dc.description.references Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the Strength Pareto Evolutionary Algorithm, Technical Report 103, Swiss Federal Institute of Technology. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem