- -

On the use of diagonal and class-dependent weighted distances for the Probabilistic k-nearest neighbor

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the use of diagonal and class-dependent weighted distances for the Probabilistic k-nearest neighbor

Mostrar el registro completo del ítem

Paredes Palacios, R.; Girolami, M. (2011). On the use of diagonal and class-dependent weighted distances for the Probabilistic k-nearest neighbor. En Pattern Recognition and Image Analysis. Springer Verlag (Germany). 6669:265-272. https://doi.org/10.1007/978-3-642-21257-4_33

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/36702

Ficheros en el ítem

Metadatos del ítem

Título: On the use of diagonal and class-dependent weighted distances for the Probabilistic k-nearest neighbor
Autor: Paredes Palacios, Roberto Girolami, Mark
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica
Fecha difusión:
Resumen:
A probabilistic k-nn (PKnn) method was introduced in [13] under the Bayesian point of view. This work showed that posterior inference over the parameter k can be performed in a relatively straightforward manner using Markov ...[+]
Palabras clave: Statistical Pattern-Recognition , Classification , Metrics , Rules , Error
Derechos de uso: Cerrado
ISBN: 978-3-642-21256-7
Fuente:
Pattern Recognition and Image Analysis. (issn: 0302-9743 )
DOI: 10.1007/978-3-642-21257-4_33
Editorial:
Springer Verlag (Germany)
Versión del editor: http://link.springer.com/chapter/10.1007/978-3-642-21257-4_33
Título del congreso: 5th Iberian Conference, IbPRIA 2011
Lugar del congreso: Las Palmas de Gran Canaria, Spain
Fecha congreso: June 8-10, 2011
Serie: Lecture Notes in Computer Science;vol. 6669
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//CSD2007-00018/ES/Multimodal Intraction in Pattern Recognition and Computer Visionm/
Agradecimientos:
Work supported by the Spanish MEC/MICINN under the MIPRCV Consolider Ingenio 2010 program (CSD2007-00018).
Tipo: Capítulo de libro

References

Short, R., Fukunaga, K.: A new nearest neighbor distance measure. In: Proceedings 5th IEEE Int. Conf. Pattern Recognition, Miami Beach, FL, pp. 81–86 (1980)

Ricci, F., Avesani, P.: Data Compression and Local Metrics for Nearest Neighbor Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(4), 380–384 (1999)

Paredes, R., Vidal, E.: A class-dependent weighted dissimilarity measure for nearest neighbor classification problems. Pattern Recognition Letters 21, 1027–1036 (2000) [+]
Short, R., Fukunaga, K.: A new nearest neighbor distance measure. In: Proceedings 5th IEEE Int. Conf. Pattern Recognition, Miami Beach, FL, pp. 81–86 (1980)

Ricci, F., Avesani, P.: Data Compression and Local Metrics for Nearest Neighbor Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(4), 380–384 (1999)

Paredes, R., Vidal, E.: A class-dependent weighted dissimilarity measure for nearest neighbor classification problems. Pattern Recognition Letters 21, 1027–1036 (2000)

Domeniconi, C., Peng, J., Gunopulos, D.: Locally Adaptive Metric Nearest Neighbor Classification. IEEE Transaction on Pattern Analysis and Machine Intelligence 24(9), 1281–1285 (2002)

de Ridder, D., Kouropteva, O., Okun, O., PietikÃd’inen, M., Duin, R.P.W.: Supervised locally linear embedding. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp. 333–341. Springer, Heidelberg (2003)

Peng, J., Heisterkamp, D.R., Dai, H.: Adaptive Quasiconformal Kernel Nearest Neighbor Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(5)

de Ridder, D., Loog, M., Reinders, M.J.T.: Local fisher embedding. In: Proceedings of the 17th International Conference on Pattern Recognition (ICPR 2004), vol. 2, pp. 295–298 (2004)

Paredes, R., Vidal, E.: Learning weighted metrics to minimize nearest-neighbor classification error. IEEE Transactions on Pattern Analisys and Machine Intelligence 28(7), 1100–1111 (2006)

Wilson, D.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Trnas. Syst., Man, Cyber. SMC-2, 408–421 (1972)

Ferri, F., Albert, J., Vidal, E.: Considerations about sample-size sensitivity of a family of edited nearest-neighbor rules. IEEE Trnas. Syst., Man, Cyber. Part B: Cybernetics 29(4), 667–672 (1999)

Paredes, R., Vidal, E.: Weighting prototypes. A new editing approach. In: Proceedings 15th. International Conference on Pattern Recognition, Barcelona, vol. 2, pp. 25–28 (2000)

Paredes, R., Vidal, E.: Learning prototypes and distances: a prototype reduction technique based on nearest neighbor error minimization. Pattern Recognition 39(2), 180–188 (2006)

Holmes, C.C., Adams, N.M.: A probabilistic nearest neighbour method for statistical pattern recognition. Journal of the Royal Statistical Society Series B 64(2), 295–306 (2002)

Everson, R., Fieldsend, J.: A variable metric probabilistic k-nearest-neighbours classifier. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) IDEAL 2004. LNCS, vol. 3177, pp. 654–659. Springer, Heidelberg (2004)

Manocha, S., Girolami, M.A.: An empirical analysis of the probabilistic k-nearest neighbour classifier. Pattern Recogn. Lett. 28(13), 1818–1824 (2007)

Blake, C., Keogh, E., Merz, C.: UCI Repository of machine learning databases, http://www.ics.uci.edu/~mlearn/MLRepository.html

D. Statistics, M. S. S. S. University., Statlog Corpora, ftp.strath.ac.uk

Raudys, S., Jain, A.: Small Sample Effects in Statistical Pattern Recognition: Recommendations for Practitioners. IEEE Trans. on Pattern Analysis and Machine Intelligence 13(3), 252–264 (1991)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem