Short, R., Fukunaga, K.: A new nearest neighbor distance measure. In: Proceedings 5th IEEE Int. Conf. Pattern Recognition, Miami Beach, FL, pp. 81–86 (1980)
Ricci, F., Avesani, P.: Data Compression and Local Metrics for Nearest Neighbor Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(4), 380–384 (1999)
Paredes, R., Vidal, E.: A class-dependent weighted dissimilarity measure for nearest neighbor classification problems. Pattern Recognition Letters 21, 1027–1036 (2000)
[+]
Short, R., Fukunaga, K.: A new nearest neighbor distance measure. In: Proceedings 5th IEEE Int. Conf. Pattern Recognition, Miami Beach, FL, pp. 81–86 (1980)
Ricci, F., Avesani, P.: Data Compression and Local Metrics for Nearest Neighbor Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(4), 380–384 (1999)
Paredes, R., Vidal, E.: A class-dependent weighted dissimilarity measure for nearest neighbor classification problems. Pattern Recognition Letters 21, 1027–1036 (2000)
Domeniconi, C., Peng, J., Gunopulos, D.: Locally Adaptive Metric Nearest Neighbor Classification. IEEE Transaction on Pattern Analysis and Machine Intelligence 24(9), 1281–1285 (2002)
de Ridder, D., Kouropteva, O., Okun, O., PietikÃd’inen, M., Duin, R.P.W.: Supervised locally linear embedding. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp. 333–341. Springer, Heidelberg (2003)
Peng, J., Heisterkamp, D.R., Dai, H.: Adaptive Quasiconformal Kernel Nearest Neighbor Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(5)
de Ridder, D., Loog, M., Reinders, M.J.T.: Local fisher embedding. In: Proceedings of the 17th International Conference on Pattern Recognition (ICPR 2004), vol. 2, pp. 295–298 (2004)
Paredes, R., Vidal, E.: Learning weighted metrics to minimize nearest-neighbor classification error. IEEE Transactions on Pattern Analisys and Machine Intelligence 28(7), 1100–1111 (2006)
Wilson, D.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Trnas. Syst., Man, Cyber. SMC-2, 408–421 (1972)
Ferri, F., Albert, J., Vidal, E.: Considerations about sample-size sensitivity of a family of edited nearest-neighbor rules. IEEE Trnas. Syst., Man, Cyber. Part B: Cybernetics 29(4), 667–672 (1999)
Paredes, R., Vidal, E.: Weighting prototypes. A new editing approach. In: Proceedings 15th. International Conference on Pattern Recognition, Barcelona, vol. 2, pp. 25–28 (2000)
Paredes, R., Vidal, E.: Learning prototypes and distances: a prototype reduction technique based on nearest neighbor error minimization. Pattern Recognition 39(2), 180–188 (2006)
Holmes, C.C., Adams, N.M.: A probabilistic nearest neighbour method for statistical pattern recognition. Journal of the Royal Statistical Society Series B 64(2), 295–306 (2002)
Everson, R., Fieldsend, J.: A variable metric probabilistic k-nearest-neighbours classifier. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) IDEAL 2004. LNCS, vol. 3177, pp. 654–659. Springer, Heidelberg (2004)
Manocha, S., Girolami, M.A.: An empirical analysis of the probabilistic k-nearest neighbour classifier. Pattern Recogn. Lett. 28(13), 1818–1824 (2007)
Blake, C., Keogh, E., Merz, C.: UCI Repository of machine learning databases, http://www.ics.uci.edu/~mlearn/MLRepository.html
D. Statistics, M. S. S. S. University., Statlog Corpora, ftp.strath.ac.uk
Raudys, S., Jain, A.: Small Sample Effects in Statistical Pattern Recognition: Recommendations for Practitioners. IEEE Trans. on Pattern Analysis and Machine Intelligence 13(3), 252–264 (1991)
[-]