Montealegre-Melendez, I., Neubauer, E., & Danninger, H. (2009). Effect of starting powder grade on sintering and properties of PM titanium metal matrix composites. Powder Metallurgy, 52(4), 322-328. doi:10.1179/174329009x457117
Eriksson, M., Andersson, M., Adolfsson, E., & Carlström, E. (2006). Titanium–hydroxyapatite composite biomaterial for dental implants. Powder Metallurgy, 49(1), 70-77. doi:10.1179/174329006x94591
Schiefer, H., Bram, M., Buchkremer, H. P., & Stöver, D. (2009). Mechanical examinations on dental implants with porous titanium coating. Journal of Materials Science: Materials in Medicine, 20(8), 1763-1770. doi:10.1007/s10856-009-3733-1
[+]
Montealegre-Melendez, I., Neubauer, E., & Danninger, H. (2009). Effect of starting powder grade on sintering and properties of PM titanium metal matrix composites. Powder Metallurgy, 52(4), 322-328. doi:10.1179/174329009x457117
Eriksson, M., Andersson, M., Adolfsson, E., & Carlström, E. (2006). Titanium–hydroxyapatite composite biomaterial for dental implants. Powder Metallurgy, 49(1), 70-77. doi:10.1179/174329006x94591
Schiefer, H., Bram, M., Buchkremer, H. P., & Stöver, D. (2009). Mechanical examinations on dental implants with porous titanium coating. Journal of Materials Science: Materials in Medicine, 20(8), 1763-1770. doi:10.1007/s10856-009-3733-1
Amigó, V., Salvador, M. D., Romero, F., Solves, C., & Moreno, J. F. (2003). Microstructural evolution of Ti–6Al–4V during the sintering of microspheres of Ti for orthopedic implants. Journal of Materials Processing Technology, 141(1), 117-122. doi:10.1016/s0924-0136(03)00243-7
[6] H.D. Kunze, Metal Powder Report 50 (1995) 36.
Esen, Z., & Bor, Ş. (2007). Processing of titanium foams using magnesium spacer particles. Scripta Materialia, 56(5), 341-344. doi:10.1016/j.scriptamat.2006.11.010
Robertson, I. M., & Schaffer, G. B. (2010). Swelling during sintering of titanium alloys based on titanium hydride powder. Powder Metallurgy, 53(1), 27-33. doi:10.1179/003258909x12502872942534
Li, C. F., Zhu, Z. G., & Liu, T. (2005). Microhardness of pore walls in porous titanium prepared with novel powder metallurgy. Powder Metallurgy, 48(3), 237-240. doi:10.1179/174329005x64162
Euh, K., Lee, J., Lee, S., Koo, Y., & Kim, N. J. (2001). Microstructural modification and hardness improvement in boride/Ti–6Al–4V surface-alloyed materials fabricated by high-energy electron beam irradiation. Scripta Materialia, 45(1), 1-6. doi:10.1016/s1359-6462(01)00981-2
De Oliveira, M. V., Moreira, A. C., Appoloni, C. R., Lopes, R. T., Pereira, L. C., & Cairo, C. A. A. (2006). Porosity Study of Sintered Titanium Foams. Materials Science Forum, 530-531, 22-28. doi:10.4028/www.scientific.net/msf.530-531.22
Azevedo, C. R. F., Rodrigues, D., & Beneduce Neto, F. (2003). Ti–Al–V powder metallurgy (PM) via the hydrogenation–dehydrogenation (HDH) process. Journal of Alloys and Compounds, 353(1-2), 217-227. doi:10.1016/s0925-8388(02)01297-5
Esteban, P. G., Bolzoni, L., Ruiz-Navas, E. M., & Gordo, E. (2011). Introducción al procesado pulvimetalúrgico del titanio. Revista de Metalurgia, 47(2), 169-187. doi:10.3989/revmetalmadrid.0943
Amigó, V., Reig, L., Busquets, D. J., Ortiz, J. L., & Calero, J. A. (2011). Analysis of bending strength of porous titanium processed by space holder method. Powder Metallurgy, 54(1), 67-70. doi:10.1179/174329009x409697
Reig, L., Amigó, V., Busquets, D., & Calero, J. A. (2011). Stiffness variation of porous titanium developed using space holder method. Powder Metallurgy, 54(3), 389-392. doi:10.1179/003258910x12707304455068
Bram, M., Schiefer, H., Bogdanski, D., Köller, M., Buchkremer, H., & Stöver, D. (2006). Implant surgery: How bone bonds to PM titanium. Metal Powder Report, 61(2), 26-31. doi:10.1016/s0026-0657(06)70603-8
[20] R.M. German, Powder Metallurgy and Particulate Materials Processing, Metal Powder Industries Federation, New Jersey, USA, 2005, pp.121-260.
[22] L.J. Gibson y M.F. Ashby, Cellular Solids: Structure and Properties, 2nd ed., Cambridge University Press, Cambridge, UK, 1997, pp. 175-231.
[23] R.M. German, Powder Metallurgy Science, 2nd ed., Metal Powder Industries Federation, New Jersey, USA, 1994, pp.241-299.
[24] R.M. German, G.L. Messing y R. G. Cornwall, Sintering Technology, Marcel Dekker inc., New York, USA, 1996, pp. 349-430.
[2] E. Benavente-Martínez, F. Devesa y V. Amigó, Rev. Metal. Madrid 46 (Nº extra) (2010) 19-25.
[7] G. Ryan, A. Pandit y D.P. Apatsidis, Biomaterials 27 (2006) 2.651-2.670.
[9] C. Aparicio, F. J. Gil, A. Padrós, C. Peraire y J. A. Planell, Rev. Metal. Madrid 34 (Nº. extra) (1998) 184-189.
[19] X. Zhao, H. Sun, L. Lan, J. Huang, H. Zhang y Y. Wang, Mater. Lett. 63 (2009) 2.402–2.404.
[21] C. Tojal, J. Devaud, V. Amigó y J.A. Calero, Rev. Metal. Madrid 46 (Nº extra) (2010) 26-32.
[25] C. Leyens y M. Peters, Titanium and Titanium Alloys. Fundamentals and Applications, ed.Wiley VchGmbh&Co., Weinheim, Alemania, 2003, pp. 423-424.
[-]