- -

Cosmic Background Bose Condensation (CBBC)

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Cosmic Background Bose Condensation (CBBC)

Show full item record

Alfonso-Faus, A.; Fullana Alfonso, MJ. (2013). Cosmic Background Bose Condensation (CBBC). Astrophysics and Space Science. 347(1):193-196. doi:10.1007/s10509-013-1500-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/36809

Files in this item

Item Metadata

Title: Cosmic Background Bose Condensation (CBBC)
Author:
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
Degeneracy effects for bosons are more important for smaller particle mass, smaller temperature and higher number density. Bose condensation requires that particles be in the same lowest energy quantum state. We propose a ...[+]
Subjects: Bose condensation , Entropy , Cosmology , Gravitation , Universe , Hawking temperature , Unruh temperature , Quantum of mass.
Copyrigths: Reserva de todos los derechos
Source:
Astrophysics and Space Science. (issn: 0004-640X )
DOI: 10.1007/s10509-013-1500-8
Publisher:
Springer Verlag (Germany)
Publisher version: http://link.springer.com/article/10.1007%2Fs10509-013-1500-8
Type: Artículo

References

Alfonso-Faus, A.: Universality of the self gravitational potential energy of any fundamental particle. Astrophys. Space Sci. 337, 363 (2010a)

Alfonso-Faus, A.: The case for the Universe to be a quantum black hole. Astrophys. Space Sci. 325, 113 (2010b)

Alfonso-Faus, A.: Galaxies: kinematics as a proof of the existence of a universal field of minimum acceleration. arXiv:0708.0308 (2010c, preprint) [+]
Alfonso-Faus, A.: Universality of the self gravitational potential energy of any fundamental particle. Astrophys. Space Sci. 337, 363 (2010a)

Alfonso-Faus, A.: The case for the Universe to be a quantum black hole. Astrophys. Space Sci. 325, 113 (2010b)

Alfonso-Faus, A.: Galaxies: kinematics as a proof of the existence of a universal field of minimum acceleration. arXiv:0708.0308 (2010c, preprint)

Alfonso-Faus, A.: Quantum gravity and information theories linked by the physical properties of the bit. arXiv:1105.3143 (2011, preprint)

Anderson, J.D., et al.: Indication, from Pioneer 10/11, Galileo, and Ulysses data, of an apparent anomalous, weak, long-range acceleration. Phys. Rev. Lett. 81, 2858 (1998)

Bekenstein, J.D.: Phys. Rev. D 23(2), 287 (1981)

Bérut, A., et al.: Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187 (2012)

Drees, M., Chung-Lin, S.: Theoretical interpretation of experimental data from direct dark matter detection. J. Cosmol. Astropart. Phys. 0706, 011 (2007)

Eisberg, R., Resnick, R.: Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, 2nd edn. Wiley, New York (1985)

Funo, K., Watanabe, Y., Ueda, M.: Thermodynamic work gain from entanglement. arXiv:1207.6872 [quant-ph] (2012, preprint)

Hawking, S.W.: Black hole explosions? Nature 248, 30 (1974)

Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183 (1961)

Landauer, R.: Dissipation and noise immunity in computation and communication. Nature 335, 779 (1988)

Lloyd, S.: Computational capacity of the universe. Phys. Rev. Lett. 88, 237901 (2002)

Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, Reading (1973), p. 466 (“Why the energy of the gravitational field cannot be localized”)

Scarpa, R., Falomo, R.: Testing Newtonian gravity in the low acceleration regime with globular clusters: the case of omega Centauri revisited. Astron. Astrophys. 523, A43 (2010)

Sivaram, C.: Cosmological and quantum constraint on particle masses. Am. J. Phys. 50, 279 (1982)

Susskind, L.: The World as a hologram. J. Math. Phys. 36, 6377 (1995)

’t Hooft, G.: Dimensional reduction in quantum gravity. arXiv:gr-qc/9310026 (1993, preprint)

Toyabe, S., et al.: Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Nat. Phys. 6, 988 (2010)

Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D, Part. Fields 14(4), 870 (1976)

Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity p. 619. Wiley, New York (1972)

[-]

This item appears in the following Collection(s)

Show full item record